{- | Module : Persistence.Matrix Copyright : (c) Eben Kadile, 2018 License : BSD 3 Clause Maintainer : eben.cowley42@gmail.com Stability : experimental This module contains a variety of matrix utility functions, used in the computation of Betti numbers and simplicial homology groups. Most importantly, it includes functions for computing the rank, normal form, and kernel of matrices. For the computation of homology groups and Betti numbers, one must perform column operations on one matrix to get it into column echelon form and find its kernel while also performing the inverse row operations on the next matrix to be operated on. Bool is an instance of Num here (instance given in Util) so that functions can be somewhat generalized to act on both integers and integers modulo 2. -} module Persistence.Matrix ( -- * Types IMatrix , BMatrix -- * Utilities , getDiagonal , getUnsignedDiagonal , transposeMat , transposePar , multiply , multiplyPar -- Int matrices , rankInt , rankIntPar , normalFormInt , normalFormIntPar , kernelInt , kernelIntPar , imgInKerInt , imgInKerIntPar -- Bool matrices , rankBool , kernelBool , imgInKerBool ) where {--FOR DEVS--------------------------------------------------------------- Matrices are transformed by iterating through each row and selecting a pivot. Zero rows are skipped for finding column eschelon form but a row operation is performed (if possible) if there is a zero row for Smith normal form. To get the smith normal form, the entire pivot row and column is eliminated before continuing. Also, the pivot is always a diagonal element. To get column eschelon form, every element in the pivot row after the pivot is eliminated. To get the kernel, all column operations to get the matrix to this form are also performed on the identiy matrix. To get the image of one matrix inside the kernel of the one being put into column eschelon form, perform the inverse row operations on the matrix whose image is needed. See stanford paper or the blog post on simplicial homology. To get the rank of a matrix, look at the number of non-zero columns in the column eschelon form. To get the kernel, look at the columns of the identity (after all of the same column operations have been performed on it) which correspond to zero columns of the column eschelon form. Eliminating elements is a slighltly more complicated process since only integer operations are allowed. First, every element that must be eliminated is made divisible by the pivot by using the Bezout coefficients from the extended Euclidean algorithm. Once this is done, integer division and subtraction can be used to eliminate the elements. Boolean matrices are much easier to work with, they are regular matrices with elements modulo 2. Bool is an instance of Num here and the instance is given in Util. --} import Persistence.Util import Data.List as L import Data.Vector as V import Control.Parallel.Strategies -- * Types -- | Matrix of integers. type IMatrix = Vector (Vector Int) -- | Matrix of integers modulo 2. Alternatively, matrix over the field with 2 elements. type BMatrix = Vector (Vector Bool) -- * Utilities isMatrix :: Vector (Vector a) -> Bool isMatrix mat = let rowLen = V.length $ V.head mat in V.all (\r -> V.length r == rowLen) mat -- | Take the transpose a matrix (no fancy optimizations, yet). transposeMat :: Vector (Vector a) -> Maybe (Vector (Vector a)) transposeMat mat = if isMatrix mat then Just $ V.map (\i -> V.map (\row -> row ! i) mat) $ 0 `range` ((V.length $ V.head mat) - 1) else Nothing -- | Take the transpose of a matrix using parallel evaluation of rows. transposePar :: Vector (Vector a) -> Vector (Vector a) transposePar mat = parMapVec (\i -> V.map (\row -> row ! i) mat) $ 0 `range` ((V.length $ V.head mat) - 1) -- | Multiply two matrices multiply :: Num a => Vector (Vector a) -> Vector (Vector a) -> Vector (Vector a) multiply mat1 mat2 = let t = case transposeMat mat2 of Just m -> m Nothing -> error "error in multiply" in V.map (\row -> V.map (dotProduct row) t) mat1 -- | Multiply matrices, evaluate rows in parallel if processors are available multiplyPar :: Num a => Vector (Vector a) -> Vector (Vector a) -> Vector (Vector a) multiplyPar mat1 mat2 = runEval $ do let t = case transposeMat mat2 of Just m -> m Nothing -> error "error in multiplyPar" rseq t return $ parMapVec (\row -> V.map (dotProduct row) t) mat1 -- | Get the diagonal elements. getDiagonal :: Vector (Vector a) -> [a] getDiagonal matrix = if V.null matrix then [] else L.map (\i -> matrix ! i ! i) [0..(min (V.length matrix) (V.length $ V.head matrix)) - 1] -- | Get the absolute value of each of the diagonal elements in a list. getUnsignedDiagonal :: Num a => Vector (Vector a) -> [a] getUnsignedDiagonal matrix = if V.null matrix then [] else L.map (\i -> abs $ matrix ! i ! i) [0..(min (V.length matrix) (V.length $ V.head matrix)) - 1] --assumes index1 < index2 colOperation :: Int -> Int -> (Int, Int, Int, Int) -> IMatrix -> IMatrix colOperation index1 index2 (c11, c12, c21, c22) matrix = let calc row = let elem1 = row ! index1 elem2 = row ! index2 first = V.take index1 row second = V.drop (index1 + 1) (V.take index2 row) third = V.drop (index2 + 1) row in first V.++ (cons (c11*elem1 + c12*elem2) second) V.++ (cons (c22*elem2 + c21*elem1) third) in V.map calc matrix colOperationPar :: Int -> Int -> (Int, Int, Int, Int) -> IMatrix -> IMatrix colOperationPar index1 index2 (c11, c12, c21, c22) matrix = let calc row = let elem1 = row ! index1 elem2 = row ! index2 first = V.take index1 row second = V.drop (index1 + 1) (V.take index2 row) third = V.drop (index2 + 1) row in first V.++ (cons (c11*elem1 + c12*elem2) second) V.++ (cons (c22*elem2 + c21*elem1) third) in parMapVec calc matrix --assumes index1 < index2 rowOperation :: Int -> Int -> (Int, Int, Int, Int) -> IMatrix -> IMatrix rowOperation index1 index2 (c11, c12, c21, c22) matrix = let row1 = matrix ! index1 row2 = matrix ! index2 first = V.take index1 matrix second = V.drop (index1 + 1) $ V.take index2 matrix third = V.drop (index2 + 1) matrix in first V.++ (cons ((c11 `mul` row1) `add` (c12 `mul` row2)) second) V.++ (cons ((c22 `mul` row2) `add` (c21 `mul` row1)) third) rowOperationPar :: Int -> Int -> (Int, Int, Int, Int) -> IMatrix -> IMatrix rowOperationPar index1 index2 (c11, c12, c21, c22) matrix = let row1 = matrix ! index1 row2 = matrix ! index2 first = V.take index1 matrix second = V.drop (index1 + 1) (V.take index2 matrix) third = V.drop (index2 + 1) matrix in runEval $ do a <- rpar $ (c11 `mul` row1) `add` (c12 `mul` row2) b <- rpar $ (c21 `mul` row1) `add` (c22 `mul` row2) rseq (a,b) return $ first V.++ (a `cons` second) V.++ (b `cons` third) -- * Int matrices --RANK-------------------------------------------------------------------- --finds the pivot in a given row for Gaussian elimination given the index of the pivot row and the matrix --returns whether or not the row needs to be eliminated with the rearranged matrix and --the column switch performed (if there was one), returns Nothing if the row is all zeroes chooseGaussPivotInt :: (Int, Int) -> IMatrix -> Maybe (Bool, IMatrix, Maybe (Int, Int)) chooseGaussPivotInt (rowIndex, colIndex) mat = let row = mat ! rowIndex indices = V.filter (\index -> index > colIndex) $ V.findIndices (\x -> x /= 0) row in if row ! colIndex == 0 then if V.null indices then Nothing else let j = V.head indices in if row ! j == 0 then error "Persistence.Matrix.chooseGaussPivotInt. This is a bug. Please email the persistence maintainers." else Just (V.length indices > 1, V.map (switchElems colIndex j) mat, Just (colIndex, j)) else Just (V.length indices > 0, mat, Nothing) --does gaussian elimination on the pivot row of an integer matrix improveRowInt :: (Int, Int) -> Int -> IMatrix -> IMatrix improveRowInt (rowIndex, colIndex) numCols matrix = let improve i mat = if i == numCols then mat else let row = mat ! rowIndex pivot = row ! colIndex x = row ! i next = i + 1 in --boundary operators have lots of zeroes --better to catch that instead of doing unnecessary % if pivot == 0 then if V.all (\a -> a == 0) row then mat else error "Persistence.Matrix.improveRowInt. This is a bug. Please email the Persistence maintainers." else if x == 0 || (x `mod` pivot == 0) then improve next mat else let gcdTriple = extEucAlg pivot x gcd = one gcdTriple in improve next $ colOperation colIndex i (thr gcdTriple, two gcdTriple, x `div` gcd, -(pivot `div` gcd)) mat in improve (colIndex + 1) matrix --given pivot index and pivot paired with matrix whose pivot row has been improved --eliminates the entries in the pivot row --the kinds of matrices that the functions work on will have lots of zeroes --better to catch that with a condition than perform an unnecessary division elimRowInt :: (Int, Int) -> IMatrix -> IMatrix elimRowInt (rowIndex, colIndex) elems = let pCol = V.map (\row -> row ! colIndex) elems pivot = pCol ! rowIndex c1 = colIndex + 1 makeCoeffs i v = if V.null v then empty else let x = V.head v; xs = V.tail v in if x == 0 then makeCoeffs (i + 1) xs else (i, x `div` pivot) `cons` (makeCoeffs (i + 1) xs) calc :: IMatrix -> Vector (Int, Int) -> IMatrix calc mat ops = if V.null ops then mat else let (i, coeff) = V.head ops in calc (mapWithIndex (\j row -> replaceElem i ((row ! i) - coeff*(pCol ! j)) row) mat) (V.tail ops) in if pivot == 0 then error "Persistence.Matrix.elimRowInt. This is a bug. Please email the Persistence maintainers." else calc elems $ makeCoeffs c1 $ V.drop c1 $ elems ! rowIndex -- | Finds the rank of integer matrix (number of linearly independent columns). rankInt :: IMatrix -> Int rankInt matrix = let rows = V.length matrix cols = V.length $ V.head matrix cols1 = cols - 1 doColOps (rowIndex, colIndex) mat = if rowIndex == rows || colIndex == cols then mat else case chooseGaussPivotInt (rowIndex, colIndex) mat of Just (True, mx, _) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowInt (rowIndex, colIndex) $ improveRowInt (rowIndex, colIndex) cols mx Just (False, mx, _) -> doColOps (rowIndex + 1, colIndex + 1) mx Nothing -> doColOps (rowIndex + 1, colIndex) mat countNonZeroCols mat = V.sum $ V.map (\i -> if V.any (\j -> mat ! j ! i /= 0) $ 0 `range` (rows - 1) then 1 else 0) $ 0 `range` cols1 in countNonZeroCols $ doColOps (0, 0) matrix --does gaussian elimination on the pivot row of an integer matrix in parallel improveRowIntPar :: (Int, Int) -> Int -> IMatrix -> IMatrix improveRowIntPar (rowIndex, colIndex) numCols matrix = let improve i mat = if i == numCols then mat else let row = mat ! rowIndex pivot = row ! colIndex x = row ! i next = i + 1 in --boundary operators have lots of zeroes --better to catch that instead of doing unnecessary % if x == 0 || (x `mod` pivot == 0) then improve next mat else let gcdTriple = extEucAlg pivot x gcd = one gcdTriple in improve next $ colOperationPar colIndex i (thr gcdTriple, two gcdTriple, x `div` gcd, -(pivot `div` gcd)) mat in improve (colIndex + 1) matrix --eliminates a row in parallel elimRowIntPar :: (Int, Int) -> IMatrix -> IMatrix elimRowIntPar (rowIndex, colIndex) elems = let pCol = V.map (\row -> row ! colIndex) elems pivot = pCol ! rowIndex c1 = colIndex + 1 makeCoeffs i v = if V.null v then empty else let x = V.head v; xs = V.tail v in if x == 0 then makeCoeffs (i + 1) xs else (i, x `div` pivot) `cons` (makeCoeffs (i + 1) xs) calc :: IMatrix -> Vector (Int, Int) -> IMatrix calc mat ops = if V.null ops then mat else let (i, coeff) = V.head ops in calc (parMapWithIndex (\j row -> replaceElem i ((row ! i) - coeff*(pCol ! j)) row) mat) (V.tail ops) in if pivot == 0 then error "Persistence.Matrix.elimRowIntPar. This is a bug. Please email the Persistence maintainers." else calc elems $ makeCoeffs c1 $ V.drop c1 $ elems ! rowIndex -- | Calculates the rank of a matrix by operating on multiple rows in parallel. rankIntPar :: IMatrix -> Int rankIntPar matrix = let rows = V.length matrix cols = V.length $ V.head matrix cols1 = cols - 1 doColOps (rowIndex, colIndex) mat = if rowIndex == rows || colIndex == cols then mat else case chooseGaussPivotInt (rowIndex, colIndex) mat of Just (True, mx, _) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowIntPar (rowIndex, colIndex) $ improveRowIntPar (rowIndex, colIndex) cols mx Just (False, mx, _) -> doColOps (rowIndex + 1, colIndex + 1) mx Nothing -> doColOps (rowIndex + 1, colIndex) mat countNonZeroCols mat = V.sum $ parMapVec (\i -> if V.any (\j -> mat ! j ! i /= 0) $ 0 `range` (rows - 1) then 1 else 0) $ 0 `range` cols1 in countNonZeroCols $ doColOps (0, 0) matrix --NORMAL FORM------------------------------------------------------------- --rearranges matrix so that the pivot entry is in the correct position --returns true if more elimination is necessary --returns Nothing if there is nothing but zeroes after the current pivot position chooseRowPivotInt :: (Int, Int) -> Int -> Int -> IMatrix -> Maybe (Bool, IMatrix) chooseRowPivotInt (rowIndex, colIndex) numRows numCols mat = let row = mat ! rowIndex rIndices = V.toList $ V.findIndices (\x -> x /= 0) row in if 0 == row ! colIndex then case rIndices of (i:is) -> Just ((L.length is) > 0, V.map (switchElems i colIndex) mat) [] -> case V.toList $ V.findIndices (\x -> x /= 0) $ V.map (\r -> r ! colIndex) mat of (i:_) -> Just (True, switchElems i rowIndex mat) [] -> Nothing else Just ((L.length rIndices) > 1, mat) --given pivot index and pivot paired with matrix, improves pivot column with row operations improveColInt :: Int -> Int -> IMatrix -> IMatrix improveColInt pIndex maxIndex matrix = let improve i mat = if i == maxIndex then mat else let pivot = matrix ! pIndex ! pIndex x = matrix ! i ! pIndex next = i + 1 in --boundary operators have lots of zeroes --better to catch that instead of doing unnecessary % if x == 0 || (x `mod` pivot == 0) then improve next mat else let gcdTriple = extEucAlg pivot x gcd = one gcdTriple in improve next $ rowOperation pIndex i (thr gcdTriple, two gcdTriple, x `div` gcd, -(pivot `div` gcd)) mat in improve (pIndex + 1) matrix --eliminates the pivot column of a matrix to obtain normal form elimColInt :: (Int, Int) -> IMatrix -> IMatrix elimColInt (rowIndex, colIndex) elems = let pRow = elems ! rowIndex pivot = pRow ! colIndex ri1 = rowIndex + 1 makeCoeffs i v = if V.null v then empty else let x = V.head v; xs = V.tail v in if x == 0 then makeCoeffs (i + 1) xs else (i, x `div` pivot) `cons` (makeCoeffs (i + 1) xs) calc :: IMatrix -> Vector (Int, Int) -> IMatrix calc mat ops = if V.null ops then mat else let (i, coeff) = V.head ops in calc (replaceElem i ((mat ! i) `subtr` (coeff `mul` pRow)) mat) (V.tail ops) in if pivot == 0 then error "Persistence.Matrix.elimColInt. This is a bug. Please email the Persistence maintainters." else calc elems $ makeCoeffs ri1 $ V.drop ri1 $ V.map (\row -> row ! colIndex) elems finish :: Int -> IMatrix -> IMatrix finish diagLen matrix = let calc i mat = let i1 = i + 1 row = mat ! i entry = row ! i nextR = mat ! i1 nextE = nextR ! i1 in if entry == 0 || i1 == diagLen then mat else if entry `divides` nextE then calc i1 mat else let mat' = replaceElem i (replaceElem i1 nextE row) mat gcdTriple = extEucAlg entry nextE; gcd = one gcdTriple improve = colOperation i i1 (thr gcdTriple, two gcdTriple, nextE `div` gcd, entry `div` gcd) cleanup = \m -> elimColInt (i, i) $ elimRowInt (i, i) m in calc i1 $ cleanup $ improve mat' absDiag i mat = if i == V.length mat then mat else absDiag (i + 1) $ replaceElem i (replaceElem i (abs $ mat!i!i) $ mat!i) mat filtered = V.partition (\row -> V.any (\x -> x /= 0) row) matrix in absDiag 0 $ calc 0 $ (fst filtered) V.++ (snd filtered) -- | Get the Smith normal form of an integer matrix. normalFormInt :: IMatrix -> IMatrix normalFormInt matrix = let rows = V.length matrix cols = V.length $ V.head matrix diag = min rows cols calc (rowIndex, colIndex) mat = if rowIndex == rows || colIndex == cols then mat else case chooseRowPivotInt (rowIndex, colIndex) rows cols mat of Just (True, mx) -> calc (rowIndex + 1, colIndex + 1) $ elimColInt (rowIndex, colIndex) $ improveColInt rowIndex rows $ elimRowInt (rowIndex, colIndex) $ improveRowInt (rowIndex, colIndex) cols mx Just (False, mx) -> calc (rowIndex + 1, colIndex + 1) $ elimColInt (rowIndex, colIndex) $ improveColInt rowIndex rows mx Nothing -> calc (rowIndex + 1, colIndex) mat in if V.null matrix then empty else finish diag $ calc (0, 0) matrix --improves the pivot column of a matrix in parallel improveColIntPar :: Int -> Int -> IMatrix -> IMatrix improveColIntPar pIndex maxIndex matrix = let improve i mat = if i == maxIndex then mat else let col = V.map (\row -> row ! pIndex) mat pivot = col ! pIndex x = col ! i next = i + 1 in --boundary operators have lots of zeroes --better to catch that instead of doing unnecessary % if x == 0 || (x `mod` pivot == 0) then improve next mat else let gcdTriple = extEucAlg pivot x gcd = one gcdTriple in improve next $ rowOperationPar pIndex i (thr gcdTriple, two gcdTriple, x `div` gcd, -(pivot `div` gcd)) mat in improve (pIndex + 1) matrix --NEEDS TO BE PARALLELIZED --eliminates pivot column in parallel elimColIntPar :: (Int, Int) -> IMatrix -> IMatrix elimColIntPar (rowIndex, colIndex) elems = let pRow = elems ! rowIndex pivot = pRow ! colIndex ri1 = rowIndex + 1 makeCoeffs i v = if V.null v then empty else let x = V.head v; xs = V.tail v in if x == 0 then makeCoeffs (i + 1) xs else (i, x `div` pivot) `cons` (makeCoeffs (i + 1) xs) calc :: IMatrix -> Vector (Int, Int) -> IMatrix calc mat ops = if V.null ops then mat else let (i, coeff) = V.head ops in calc (replaceElem i ((mat ! i) `subtr` (coeff `mul` pRow)) mat) (V.tail ops) in calc elems $ makeCoeffs ri1 $ V.drop ri1 $ V.map (\row -> row ! colIndex) elems -- | Gets the Smith normal form of a matrix, uses lots of parallelism if processors are available. normalFormIntPar :: IMatrix -> IMatrix normalFormIntPar matrix = let rows = V.length matrix cols = V.length $ V.head matrix diag = min rows cols calc (rowIndex, colIndex) mat = if rowIndex == rows || colIndex == cols then mat else case chooseRowPivotInt (rowIndex, colIndex) rows cols mat of Just (True, mx) -> calc (rowIndex + 1, colIndex + 1) $ elimColIntPar (rowIndex, colIndex) $ improveColIntPar rowIndex rows $ elimRowIntPar (rowIndex, colIndex) $ improveRowIntPar (rowIndex, colIndex) cols mx Just (False, mx) -> calc (rowIndex + 1, colIndex + 1) $ elimColIntPar (rowIndex, colIndex) $ improveColIntPar rowIndex rows mx Nothing -> calc (rowIndex + 1, colIndex) mat in if V.null matrix then empty else finish diag $ calc (0, 0) matrix --KERNEL------------------------------------------------------------------ --improves the pivot row of an integer matrix --performs the same column operations on the identity improveRowIntWithId :: (Int, Int) -> Int -> IMatrix -> IMatrix -> (IMatrix, Int, IMatrix) improveRowIntWithId (rowIndex, colIndex) numCols elems identity = let improve i mat ide = if i == numCols then (mat, mat ! rowIndex ! colIndex, ide) else let row = mat ! rowIndex pivot = row ! colIndex x = row ! i next = i + 1 in if x == 0 || (x `mod` pivot == 0) then improve next mat ide else let gcdTriple = extEucAlg pivot x gcd = one gcdTriple transform = colOperation colIndex i (thr gcdTriple, two gcdTriple, x `div` gcd, -(pivot `div` gcd)) in improve next (transform mat) (transform ide) in improve (colIndex + 1) elems identity --eliminates all the entries in the pivot row that come after the pivot --after the matrix has been improved --returns the new matrix (fst) and --the identity with whatever column operations were performed (snd) elimRowIntWithId :: (Int, Int) -> Int -> (IMatrix, Int, IMatrix) -> (IMatrix, IMatrix) elimRowIntWithId (rowIndex, colIndex) numCols (elems, pivot, identity) = let row = elems ! rowIndex elim i mat ide = if i == numCols then (mat, ide) else let coeff = (row ! i) `div` pivot transform = V.map (\r -> (V.take i r) V.++ (cons ((r ! i) - coeff*(r ! colIndex)) (V.drop (i + 1) r))) in elim (i + 1) (transform mat) (transform ide) in elim (colIndex + 1) elems identity -- | Finds a basis for the kernel of a matrix, arranges the basis vectors into the rows of a matrix. kernelInt :: IMatrix -> IMatrix kernelInt matrix = let rows = V.length matrix cols = V.length $ V.head matrix cols1 = cols - 1 identity = V.map (\i -> (V.replicate i 0) V.++ (cons 1 (V.replicate (cols1 - i) 0))) $ 0 `range` cols1 doColOps (rowIndex, colIndex) (elems, ide) = if rowIndex == rows || colIndex == cols then (elems, ide) else case chooseGaussPivotInt (rowIndex, colIndex) elems of Just (True, mx, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowIntWithId (rowIndex, colIndex) cols $ improveRowIntWithId (rowIndex, colIndex) cols mx $ V.map (switchElems i j) ide Just (True, _, Nothing) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowIntWithId (rowIndex, colIndex) cols $ improveRowIntWithId (rowIndex, colIndex) cols elems ide Just (False, mx, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) (mx, V.map (switchElems i j) ide) Just (False, _, _) -> doColOps (rowIndex + 1, colIndex + 1) (elems, ide) Nothing -> doColOps (rowIndex + 1, colIndex) (elems, ide) result = doColOps (0, 0) (matrix, identity) elems = fst result ide = snd result in V.map (\i -> V.map (\row -> row ! i) ide) $ V.filter (\i -> V.all (\row -> row ! i == 0) elems) $ 0 `range` cols1 --improves row in parallel and does the same thing to the identity matrix in parallel improveRowIntWithIdPar :: (Int, Int) -> Int -> IMatrix -> IMatrix -> (IMatrix, Int, IMatrix) improveRowIntWithIdPar (rowIndex, colIndex) numCols elems identity = let improve i mat ide = if i == numCols then (mat, mat ! rowIndex ! colIndex, ide) else let row = mat ! rowIndex pivot = row ! colIndex x = row ! i next = i + 1 in --boundary operators have lots of zeroes --better to catch that instead of doing unnecessary % if x == 0 || (x `mod` pivot == 0) then improve next mat ide else let gcdTriple = extEucAlg pivot x gcd = one gcdTriple transform = colOperationPar colIndex i (thr gcdTriple, two gcdTriple, x `div` gcd, -(pivot `div` gcd)) in improve next (transform mat) (transform ide) in improve (colIndex + 1) elems identity --eliminates entries in the pivot row in parallel and does the same to the identity elimRowIntWithIdPar :: (Int, Int) -> Int -> (IMatrix, Int, IMatrix) -> (IMatrix, IMatrix) elimRowIntWithIdPar (rowIndex, colIndex) numCols (elems, pivot, identity) = let row = elems ! rowIndex elim i mat ide = if i == numCols then (mat, ide) else let coeff = (row ! i) `div` pivot transform = parMapVec (\r -> (V.take i r) V.++ (cons ((r ! i) - coeff*(r ! colIndex)) (V.drop (i + 1) r))) in elim (i + 1) (transform mat) (transform ide) in elim (colIndex + 1) elems identity -- | Computes basis vectors for the kernel of an integer matrix and arranges them into the rows of a matrix using lots of parallelism if processors are available. kernelIntPar :: IMatrix -> IMatrix kernelIntPar matrix = let rows = V.length matrix cols = V.length $ V.head matrix cols1 = cols - 1 identity = V.map (\i -> (V.replicate i 0) V.++ (cons 1 (V.replicate (cols1 - i) 0))) $ 0 `range` cols1 doColOps (rowIndex, colIndex) (elems, ide) = if rowIndex == rows || colIndex == cols then (elems, ide) else case chooseGaussPivotInt (rowIndex, colIndex) elems of Just (True, mx, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowIntWithIdPar (rowIndex, colIndex) cols $ improveRowIntWithIdPar (rowIndex, colIndex) cols mx $ V.map (switchElems i j) ide Just (True, _, Nothing) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowIntWithIdPar (rowIndex, colIndex) cols $ improveRowIntWithIdPar (rowIndex, colIndex) cols elems ide Just (False, mx, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) (mx, V.map (switchElems i j) ide) Just (False, _, _) -> doColOps (rowIndex + 1, colIndex + 1) (elems, ide) Nothing -> doColOps (rowIndex + 1, colIndex) (elems, ide) result = doColOps (0, 0) (matrix, identity) elems = fst result ide = snd result in V.map (\i -> V.map (\row -> row ! i) ide) $ V.filter (\i -> V.all (\row -> row ! i == 0) elems) $ 0 `range` cols1 --FIND IMAGE IN BASIS OF KERNEL------------------------------------------- --improves the row of the first matrix --and performs the inverse column operations on the second matrix improveRowIntWithInv :: (Int, Int) -> Int -> IMatrix -> IMatrix -> (IMatrix, Int, IMatrix) improveRowIntWithInv (rowIndex, colIndex) numCols kernel image = let improve i ker img = if i == numCols then (ker, ker ! rowIndex ! colIndex, img) else let row = ker ! rowIndex pivot = row ! colIndex x = row ! i next = i + 1 in if x == 0 || (x `mod` pivot == 0) then improve next ker img else let gcdTriple = extEucAlg pivot x gcd = one gcdTriple q1 = pivot `div` gcd q2 = x `div` gcd transform1 = colOperationPar colIndex i (thr gcdTriple, two gcdTriple, q2, -q1) transform2 = rowOperationPar colIndex i (-q1, -(two gcdTriple), -q2, thr gcdTriple) in improve next (transform1 ker) (transform2 img) in improve (colIndex + 1) kernel image --eliminates the row if the first matrix --performs inverse column operations on the second matrix elimRowIntWithInv :: (Int, Int) -> Int -> (IMatrix, Int, IMatrix) -> (IMatrix, IMatrix) elimRowIntWithInv (rowIndex, colIndex) numCols (kernel, pivot, image) = let elim i ker img | i == numCols = (ker, img) | row ! i == 0 = elim (i + 1) ker img | otherwise = let coeff = (row ! i) `div` pivot transform1 = V.map (\r -> replaceElem i ((r ! i) - coeff*(r ! colIndex)) r) transform2 = \mat -> replaceElem colIndex ((coeff `mul` (mat ! i)) `add` (mat ! colIndex)) mat in elim (i + 1) (transform1 ker) (transform2 img) where row = ker ! rowIndex in elim (colIndex + 1) kernel image -- | Calculates the image of the second matrix represented in the basis of the kernel of the first matrix. imgInKerInt :: IMatrix -> IMatrix -> IMatrix imgInKerInt toColEsch toImage = let rows = V.length toColEsch cols = V.length $ V.head toColEsch doColOps (rowIndex, colIndex) (ker, img) = if rowIndex == rows || colIndex == cols then (ker, img) else case chooseGaussPivotInt (rowIndex, colIndex) ker of Just (True, _, Nothing) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowIntWithInv (rowIndex, colIndex) cols $ improveRowIntWithInv (rowIndex, colIndex) cols ker img Just (True, mx, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowIntWithInv (rowIndex, colIndex) cols $ improveRowIntWithInv (rowIndex, colIndex) cols mx $ switchElems i j img Just (False, mx, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) (mx, switchElems i j img) Just (False, _, _) -> doColOps (rowIndex + 1, colIndex + 1) (ker, img) Nothing -> doColOps (rowIndex + 1, colIndex) (ker, img) result = doColOps (0, 0) (toColEsch, toImage) colEsch = fst result image = snd result in V.map (\i -> image ! i) $ V.filter (\i -> V.all (\row -> row ! i == 0) colEsch) $ 0 `range` (cols - 1) --improves row and does inverse operations in parallel improveRowIntWithInvPar :: (Int, Int) -> Int -> IMatrix -> IMatrix -> (IMatrix, Int, IMatrix) improveRowIntWithInvPar (rowIndex, colIndex) numCols kernel image = let improve i ker img = if i == numCols then (ker, ker ! rowIndex ! colIndex, img) else let row = ker ! rowIndex pivot = row ! colIndex x = row ! i next = i + 1 in if x == 0 || (x `mod` pivot == 0) then improve next ker img else let gcdTriple = extEucAlg pivot x gcd = one gcdTriple q1 = pivot `div` gcd q2 = x `div` gcd transform1 = colOperationPar colIndex i (thr gcdTriple, two gcdTriple, q2, -q1) transform2 = rowOperationPar colIndex i (-q1, -(two gcdTriple), -q2, thr gcdTriple) in improve next (transform1 ker) (transform2 img) in improve (colIndex + 1) kernel image --eliminates row in parallel --INVERSE OPERATIONS NEED TO BE PARALLELIZED elimRowIntWithInvPar :: (Int, Int) -> Int -> (IMatrix, Int, IMatrix) -> (IMatrix, IMatrix) elimRowIntWithInvPar (rowIndex, colIndex) numCols (kernel, pivot, image) = let elim i ker img | i == numCols = (ker, img) | row ! i == 0 = elim (i + 1) ker img | otherwise = let coeff = (row ! i) `div` pivot transform1 = parMapVec (\r -> replaceElem i ((r ! i) - coeff*(r ! colIndex)) r) transform2 = \mat -> replaceElem colIndex ((coeff `mul` (mat ! i)) `add` (mat ! colIndex)) mat in elim (i + 1) (transform1 ker) (transform2 img) where row = ker ! rowIndex in elim (colIndex + 1) kernel image -- | Calculates the image of the second matrix represented in the basis of the kernel of the first matrix. Uses lots of parallelism if processors are available. imgInKerIntPar :: IMatrix -> IMatrix -> IMatrix imgInKerIntPar toColEsch toImage = let rows = V.length toColEsch cols = V.length $ V.head toColEsch doColOps (rowIndex, colIndex) (ker, img) = if rowIndex == rows || colIndex == cols then (ker, img) else case chooseGaussPivotInt (rowIndex, colIndex) ker of Just (True, _, Nothing) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowIntWithInvPar (rowIndex, colIndex) cols $ improveRowIntWithInvPar (rowIndex, colIndex) cols ker img Just (True, mx, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowIntWithInvPar (rowIndex, colIndex) cols $ improveRowIntWithInvPar (rowIndex, colIndex) cols mx $ switchElems i j img Just (False, mx, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) (mx, switchElems i j img) Just (False, _, _) -> doColOps (rowIndex + 1, colIndex + 1) (ker, img) Nothing -> doColOps (rowIndex + 1, colIndex) (ker, img) result = doColOps (0, 0) (toColEsch, toImage) ker = fst result img = snd result in V.map (\i -> img ! i) $ V.filter (\i -> V.all (\row -> row ! i == 0) ker) $ 0 `range` (cols - 1) -- * Bool matrices --RANK-------------------------------------------------------------------- --given the index of the pivot row and the matrix --determines whether there is a non-zero element in the row, does necessary rearranging --and returns the column operation that was performed if there was one --returns Nothing if the entire row is zero chooseGaussPivotBool :: (Int, Int) -> BMatrix -> Maybe (Bool, BMatrix, Maybe (Int, Int)) chooseGaussPivotBool (rowIndex, colIndex) mat = let row = mat ! rowIndex indices = V.filter (\index -> index > colIndex) $ V.findIndices id row in if not $ row ! colIndex then if V.null indices then Nothing else let j = V.head indices in Just (V.length indices > 0, V.map (switchElems colIndex j) mat, Just (colIndex, j)) else Just (V.length indices > 0, mat, Nothing) --eliminates pivot row of a boolean matrix elimRowBool :: (Int, Int) -> Int -> BMatrix -> BMatrix elimRowBool (rowIndex, colIndex) numCols elems = let row = elems ! rowIndex elim i mat | i == numCols = mat | not $ row ! i = elim (i + 1) mat | otherwise = elim (i + 1) $ V.map (\row -> replaceElem i ((row ! i) + (row ! colIndex)) row) mat in elim (colIndex + 1) elems -- | Find the rank of a mod 2 matrix (number of linearly independent columns). rankBool :: BMatrix -> Int rankBool matrix = let rows = V.length matrix cols = V.length $ V.head matrix cols1 = cols - 1 doColOps (rowIndex, colIndex) mat = if rowIndex == rows || colIndex == cols then mat else case chooseGaussPivotBool (rowIndex, colIndex) mat of Just (True, mx, _) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowBool (rowIndex, colIndex) cols mx Just (False, mx, _) -> doColOps (rowIndex + 1, colIndex + 1) mat Nothing -> doColOps (rowIndex + 1, colIndex) mat countNonZeroCols mat = V.sum $ V.map (\i -> if V.any (\j -> mat ! j ! i /= 0) (0 `range` (rows - 1)) then 1 else 0) $ 0 `range` cols1 in countNonZeroCols $ doColOps (0, 0) matrix --KERNEL------------------------------------------------------------------ --eliminates all the entries in the pivot row that come after the pivot --after the matrix has been improved --returns the new matrix (fst) paired --and the identity with whatever column operations were performed (snd) elimRowBoolWithId :: (Int, Int) -> Int -> BMatrix -> BMatrix -> (BMatrix, BMatrix) elimRowBoolWithId (rowIndex, colIndex) numCols elems identity = let row = elems ! rowIndex elim i mat ide | i == numCols = (mat, ide) | not $ row ! i = elim (i + 1) mat ide | otherwise = let transform = V.map (\row -> replaceElem i ((row ! i) + (row ! colIndex)) row) in elim (i + 1) (transform mat) (transform ide) in elim (colIndex + 1) elems identity -- | Finds the basis of the kernel of a matrix, arranges the basis vectors into the rows of a matrix. kernelBool :: BMatrix -> BMatrix kernelBool matrix = let rows = V.length matrix cols = V.length $ V.head matrix cols1 = cols - 1 identity = V.map (\i -> (V.replicate i False) V.++ (cons True (V.replicate (cols1 - i) False))) $ 0 `range` cols1 doColOps (rowIndex, colIndex) (ker, ide) = if rowIndex == rows || colIndex == cols then (ker, ide) else case chooseGaussPivotBool (rowIndex, colIndex) ker of Just (True, _, Nothing) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowBoolWithId (rowIndex, colIndex) cols ker ide Just (True, mx, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowBoolWithId (rowIndex, colIndex) cols mx $ V.map (switchElems i j) ide Just (False, _, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) (ker, V.map (switchElems i j) ide) Just (False, _, _) -> doColOps (rowIndex + 1, colIndex + 1) (ker, ide) Nothing -> doColOps (rowIndex + 1, colIndex) (ker, ide) result = doColOps (0, 0) (matrix, identity) ker = fst result img = snd result in V.map (\i -> img ! i) $ V.filter (\i -> V.all (\row -> not $ row ! i) ker) $ 0 `range` cols1 --IMAGE IN BASIS OF KERNEL------------------------------------------------ elimRowBoolWithInv :: (Int, Int) -> Int -> BMatrix -> BMatrix -> (BMatrix, BMatrix) elimRowBoolWithInv (rowIndex, colIndex) numCols toColEch toImage = let row = toColEch ! rowIndex elim i ech img | i == numCols = (ech, img) | not $ row ! i = elim (i + 1) ech img | otherwise = let transform1 = V.map (\r -> replaceElem i ((r ! i) + (r ! colIndex)) r) transform2 = \mat -> replaceElem colIndex ((mat ! i) `add` (mat ! colIndex)) mat in elim (i + 1) (transform1 ech) (transform2 img) in elim (colIndex + 1) toColEch toImage -- | Calculates the image of the second matrix represented in the basis of the kernel of the first matrix. imgInKerBool :: BMatrix -> BMatrix -> BMatrix imgInKerBool toColEch toImage = let rows = V.length toColEch cols = V.length $ V.head toColEch cols1 = cols - 1 doColOps (rowIndex, colIndex) (ech, img) = if rowIndex == rows || colIndex == cols then (ech, img) else case chooseGaussPivotBool (rowIndex, colIndex) ech of Just (True, _, Nothing) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowBoolWithInv (rowIndex, colIndex) cols ech img Just (True, mx, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) $ elimRowBoolWithInv (rowIndex, colIndex) cols mx $ switchElems i j img Just (False, mx, Just (i, j)) -> doColOps (rowIndex + 1, colIndex + 1) (mx, switchElems i j img) Just (False, _, _) -> doColOps (rowIndex + 1, colIndex + 1) (ech, img) Nothing -> doColOps (rowIndex + 1, colIndex) (ech, img) result = doColOps (0, 0) (toColEch, toImage) ker = fst result img = snd result in V.map (\i -> img ! i) $ V.filter (\i -> V.all (\row -> not $ row ! i) ker) $ 0 `range` cols1