//===- CallEvent.h - Wrapper for all function and method calls ----*- C++ -*--// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file This file defines CallEvent and its subclasses, which represent path- /// sensitive instances of different kinds of function and method calls /// (C, C++, and Objective-C). // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_STATICANALYZER_PATHSENSITIVE_CALL #define LLVM_CLANG_STATICANALYZER_PATHSENSITIVE_CALL #include "clang/AST/DeclCXX.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Basic/SourceManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" #include "llvm/ADT/PointerIntPair.h" namespace clang { class ProgramPoint; class ProgramPointTag; namespace ento { enum CallEventKind { CE_Function, CE_Block, CE_BEG_SIMPLE_CALLS = CE_Function, CE_END_SIMPLE_CALLS = CE_Block, CE_CXXMember, CE_CXXMemberOperator, CE_CXXDestructor, CE_BEG_CXX_INSTANCE_CALLS = CE_CXXMember, CE_END_CXX_INSTANCE_CALLS = CE_CXXDestructor, CE_CXXConstructor, CE_CXXAllocator, CE_BEG_FUNCTION_CALLS = CE_Function, CE_END_FUNCTION_CALLS = CE_CXXAllocator, CE_ObjCMessage }; class CallEvent; class CallEventManager; template class CallEventRef : public IntrusiveRefCntPtr { public: CallEventRef(const T *Call) : IntrusiveRefCntPtr(Call) {} CallEventRef(const CallEventRef &Orig) : IntrusiveRefCntPtr(Orig) {} CallEventRef cloneWithState(ProgramStateRef State) const { return this->getPtr()->template cloneWithState(State); } // Allow implicit conversions to a superclass type, since CallEventRef // behaves like a pointer-to-const. template operator CallEventRef () const { return this->getPtr(); } }; /// \class RuntimeDefinition /// \brief Defines the runtime definition of the called function. /// /// Encapsulates the information we have about which Decl will be used /// when the call is executed on the given path. When dealing with dynamic /// dispatch, the information is based on DynamicTypeInfo and might not be /// precise. class RuntimeDefinition { /// The Declaration of the function which could be called at runtime. /// NULL if not available. const Decl *D; /// The region representing an object (ObjC/C++) on which the method is /// called. With dynamic dispatch, the method definition depends on the /// runtime type of this object. NULL when the DynamicTypeInfo is /// precise. const MemRegion *R; public: RuntimeDefinition(): D(0), R(0) {} RuntimeDefinition(const Decl *InD): D(InD), R(0) {} RuntimeDefinition(const Decl *InD, const MemRegion *InR): D(InD), R(InR) {} const Decl *getDecl() { return D; } /// \brief Check if the definition we have is precise. /// If not, it is possible that the call dispatches to another definition at /// execution time. bool mayHaveOtherDefinitions() { return R != 0; } /// When other definitions are possible, returns the region whose runtime type /// determines the method definition. const MemRegion *getDispatchRegion() { return R; } }; /// \brief Represents an abstract call to a function or method along a /// particular path. /// /// CallEvents are created through the factory methods of CallEventManager. /// /// CallEvents should always be cheap to create and destroy. In order for /// CallEventManager to be able to re-use CallEvent-sized memory blocks, /// subclasses of CallEvent may not add any data members to the base class. /// Use the "Data" and "Location" fields instead. class CallEvent { public: typedef CallEventKind Kind; private: ProgramStateRef State; const LocationContext *LCtx; llvm::PointerUnion Origin; void operator=(const CallEvent &) LLVM_DELETED_FUNCTION; protected: // This is user data for subclasses. const void *Data; // This is user data for subclasses. // This should come right before RefCount, so that the two fields can be // packed together on LP64 platforms. SourceLocation Location; private: mutable unsigned RefCount; template friend struct llvm::IntrusiveRefCntPtrInfo; void Retain() const { ++RefCount; } void Release() const; protected: friend class CallEventManager; CallEvent(const Expr *E, ProgramStateRef state, const LocationContext *lctx) : State(state), LCtx(lctx), Origin(E), RefCount(0) {} CallEvent(const Decl *D, ProgramStateRef state, const LocationContext *lctx) : State(state), LCtx(lctx), Origin(D), RefCount(0) {} // DO NOT MAKE PUBLIC CallEvent(const CallEvent &Original) : State(Original.State), LCtx(Original.LCtx), Origin(Original.Origin), Data(Original.Data), Location(Original.Location), RefCount(0) {} /// Copies this CallEvent, with vtable intact, into a new block of memory. virtual void cloneTo(void *Dest) const = 0; /// \brief Get the value of arbitrary expressions at this point in the path. SVal getSVal(const Stmt *S) const { return getState()->getSVal(S, getLocationContext()); } typedef SmallVectorImpl ValueList; /// \brief Used to specify non-argument regions that will be invalidated as a /// result of this call. virtual void getExtraInvalidatedValues(ValueList &Values) const {} public: virtual ~CallEvent() {} /// \brief Returns the kind of call this is. virtual Kind getKind() const = 0; /// \brief Returns the declaration of the function or method that will be /// called. May be null. virtual const Decl *getDecl() const { return Origin.dyn_cast(); } /// \brief The state in which the call is being evaluated. const ProgramStateRef &getState() const { return State; } /// \brief The context in which the call is being evaluated. const LocationContext *getLocationContext() const { return LCtx; } /// \brief Returns the definition of the function or method that will be /// called. virtual RuntimeDefinition getRuntimeDefinition() const = 0; /// \brief Returns the expression whose value will be the result of this call. /// May be null. const Expr *getOriginExpr() const { return Origin.dyn_cast(); } /// \brief Returns the number of arguments (explicit and implicit). /// /// Note that this may be greater than the number of parameters in the /// callee's declaration, and that it may include arguments not written in /// the source. virtual unsigned getNumArgs() const = 0; /// \brief Returns true if the callee is known to be from a system header. bool isInSystemHeader() const { const Decl *D = getDecl(); if (!D) return false; SourceLocation Loc = D->getLocation(); if (Loc.isValid()) { const SourceManager &SM = getState()->getStateManager().getContext().getSourceManager(); return SM.isInSystemHeader(D->getLocation()); } // Special case for implicitly-declared global operator new/delete. // These should be considered system functions. if (const FunctionDecl *FD = dyn_cast(D)) return FD->isOverloadedOperator() && FD->isImplicit() && FD->isGlobal(); return false; } /// \brief Returns a source range for the entire call, suitable for /// outputting in diagnostics. virtual SourceRange getSourceRange() const { return getOriginExpr()->getSourceRange(); } /// \brief Returns the value of a given argument at the time of the call. virtual SVal getArgSVal(unsigned Index) const; /// \brief Returns the expression associated with a given argument. /// May be null if this expression does not appear in the source. virtual const Expr *getArgExpr(unsigned Index) const { return 0; } /// \brief Returns the source range for errors associated with this argument. /// /// May be invalid if the argument is not written in the source. virtual SourceRange getArgSourceRange(unsigned Index) const; /// \brief Returns the result type, adjusted for references. QualType getResultType() const; /// \brief Returns the return value of the call. /// /// This should only be called if the CallEvent was created using a state in /// which the return value has already been bound to the origin expression. SVal getReturnValue() const; /// \brief Returns true if any of the arguments appear to represent callbacks. bool hasNonZeroCallbackArg() const; /// \brief Returns true if any of the arguments are known to escape to long- /// term storage, even if this method will not modify them. // NOTE: The exact semantics of this are still being defined! // We don't really want a list of hardcoded exceptions in the long run, // but we don't want duplicated lists of known APIs in the short term either. virtual bool argumentsMayEscape() const { return hasNonZeroCallbackArg(); } /// \brief Returns true if the callee is an externally-visible function in the /// top-level namespace, such as \c malloc. /// /// You can use this call to determine that a particular function really is /// a library function and not, say, a C++ member function with the same name. /// /// If a name is provided, the function must additionally match the given /// name. /// /// Note that this deliberately excludes C++ library functions in the \c std /// namespace, but will include C library functions accessed through the /// \c std namespace. This also does not check if the function is declared /// as 'extern "C"', or if it uses C++ name mangling. // FIXME: Add a helper for checking namespaces. // FIXME: Move this down to AnyFunctionCall once checkers have more // precise callbacks. bool isGlobalCFunction(StringRef SpecificName = StringRef()) const; /// \brief Returns the name of the callee, if its name is a simple identifier. /// /// Note that this will fail for Objective-C methods, blocks, and C++ /// overloaded operators. The former is named by a Selector rather than a /// simple identifier, and the latter two do not have names. // FIXME: Move this down to AnyFunctionCall once checkers have more // precise callbacks. const IdentifierInfo *getCalleeIdentifier() const { const NamedDecl *ND = dyn_cast_or_null(getDecl()); if (!ND) return 0; return ND->getIdentifier(); } /// \brief Returns an appropriate ProgramPoint for this call. ProgramPoint getProgramPoint(bool IsPreVisit = false, const ProgramPointTag *Tag = 0) const; /// \brief Returns a new state with all argument regions invalidated. /// /// This accepts an alternate state in case some processing has already /// occurred. ProgramStateRef invalidateRegions(unsigned BlockCount, ProgramStateRef Orig = 0) const; typedef std::pair FrameBindingTy; typedef SmallVectorImpl BindingsTy; /// Populates the given SmallVector with the bindings in the callee's stack /// frame at the start of this call. virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const = 0; /// Returns a copy of this CallEvent, but using the given state. template CallEventRef cloneWithState(ProgramStateRef NewState) const; /// Returns a copy of this CallEvent, but using the given state. CallEventRef<> cloneWithState(ProgramStateRef NewState) const { return cloneWithState(NewState); } /// \brief Returns true if this is a statement is a function or method call /// of some kind. static bool isCallStmt(const Stmt *S); /// \brief Returns the result type of a function or method declaration. /// /// This will return a null QualType if the result type cannot be determined. static QualType getDeclaredResultType(const Decl *D); /// \brief Returns true if the given decl is known to be variadic. /// /// \p D must not be null. static bool isVariadic(const Decl *D); // Iterator access to formal parameters and their types. private: typedef std::const_mem_fun_t get_type_fun; public: typedef const ParmVarDecl * const *param_iterator; /// Returns an iterator over the call's formal parameters. /// /// Remember that the number of formal parameters may not match the number /// of arguments for all calls. However, the first parameter will always /// correspond with the argument value returned by \c getArgSVal(0). /// /// If the call has no accessible declaration, \c param_begin() will be equal /// to \c param_end(). virtual param_iterator param_begin() const = 0; /// \sa param_begin() virtual param_iterator param_end() const = 0; typedef llvm::mapped_iterator param_type_iterator; /// Returns an iterator over the types of the call's formal parameters. /// /// This uses the callee decl found by default name lookup rather than the /// definition because it represents a public interface, and probably has /// more annotations. param_type_iterator param_type_begin() const { return llvm::map_iterator(param_begin(), get_type_fun(&ParmVarDecl::getType)); } /// \sa param_type_begin() param_type_iterator param_type_end() const { return llvm::map_iterator(param_end(), get_type_fun(&ParmVarDecl::getType)); } // For debugging purposes only void dump(raw_ostream &Out) const; LLVM_ATTRIBUTE_USED void dump() const; }; /// \brief Represents a call to any sort of function that might have a /// FunctionDecl. class AnyFunctionCall : public CallEvent { protected: AnyFunctionCall(const Expr *E, ProgramStateRef St, const LocationContext *LCtx) : CallEvent(E, St, LCtx) {} AnyFunctionCall(const Decl *D, ProgramStateRef St, const LocationContext *LCtx) : CallEvent(D, St, LCtx) {} AnyFunctionCall(const AnyFunctionCall &Other) : CallEvent(Other) {} public: // This function is overridden by subclasses, but they must return // a FunctionDecl. virtual const FunctionDecl *getDecl() const { return cast(CallEvent::getDecl()); } virtual RuntimeDefinition getRuntimeDefinition() const { const FunctionDecl *FD = getDecl(); // Note that the AnalysisDeclContext will have the FunctionDecl with // the definition (if one exists). if (FD) { AnalysisDeclContext *AD = getLocationContext()->getAnalysisDeclContext()-> getManager()->getContext(FD); if (AD->getBody()) return RuntimeDefinition(AD->getDecl()); } return RuntimeDefinition(); } virtual bool argumentsMayEscape() const; virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const; virtual param_iterator param_begin() const; virtual param_iterator param_end() const; static bool classof(const CallEvent *CA) { return CA->getKind() >= CE_BEG_FUNCTION_CALLS && CA->getKind() <= CE_END_FUNCTION_CALLS; } }; /// \brief Represents a call to a non-C++ function, written as a CallExpr. class SimpleCall : public AnyFunctionCall { protected: SimpleCall(const CallExpr *CE, ProgramStateRef St, const LocationContext *LCtx) : AnyFunctionCall(CE, St, LCtx) {} SimpleCall(const SimpleCall &Other) : AnyFunctionCall(Other) {} public: virtual const CallExpr *getOriginExpr() const { return cast(AnyFunctionCall::getOriginExpr()); } virtual const FunctionDecl *getDecl() const; virtual unsigned getNumArgs() const { return getOriginExpr()->getNumArgs(); } virtual const Expr *getArgExpr(unsigned Index) const { return getOriginExpr()->getArg(Index); } static bool classof(const CallEvent *CA) { return CA->getKind() >= CE_BEG_SIMPLE_CALLS && CA->getKind() <= CE_END_SIMPLE_CALLS; } }; /// \brief Represents a C function or static C++ member function call. /// /// Example: \c fun() class FunctionCall : public SimpleCall { friend class CallEventManager; protected: FunctionCall(const CallExpr *CE, ProgramStateRef St, const LocationContext *LCtx) : SimpleCall(CE, St, LCtx) {} FunctionCall(const FunctionCall &Other) : SimpleCall(Other) {} virtual void cloneTo(void *Dest) const { new (Dest) FunctionCall(*this); } public: virtual Kind getKind() const { return CE_Function; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_Function; } }; /// \brief Represents a call to a block. /// /// Example: ^{ /* ... */ }() class BlockCall : public SimpleCall { friend class CallEventManager; protected: BlockCall(const CallExpr *CE, ProgramStateRef St, const LocationContext *LCtx) : SimpleCall(CE, St, LCtx) {} BlockCall(const BlockCall &Other) : SimpleCall(Other) {} virtual void cloneTo(void *Dest) const { new (Dest) BlockCall(*this); } virtual void getExtraInvalidatedValues(ValueList &Values) const; public: /// \brief Returns the region associated with this instance of the block. /// /// This may be NULL if the block's origin is unknown. const BlockDataRegion *getBlockRegion() const; /// \brief Gets the declaration of the block. /// /// This is not an override of getDecl() because AnyFunctionCall has already /// assumed that it's a FunctionDecl. const BlockDecl *getBlockDecl() const { const BlockDataRegion *BR = getBlockRegion(); if (!BR) return 0; return BR->getDecl(); } virtual RuntimeDefinition getRuntimeDefinition() const { return RuntimeDefinition(getBlockDecl()); } virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const; virtual param_iterator param_begin() const; virtual param_iterator param_end() const; virtual Kind getKind() const { return CE_Block; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_Block; } }; /// \brief Represents a non-static C++ member function call, no matter how /// it is written. class CXXInstanceCall : public AnyFunctionCall { protected: virtual void getExtraInvalidatedValues(ValueList &Values) const; CXXInstanceCall(const CallExpr *CE, ProgramStateRef St, const LocationContext *LCtx) : AnyFunctionCall(CE, St, LCtx) {} CXXInstanceCall(const FunctionDecl *D, ProgramStateRef St, const LocationContext *LCtx) : AnyFunctionCall(D, St, LCtx) {} CXXInstanceCall(const CXXInstanceCall &Other) : AnyFunctionCall(Other) {} public: /// \brief Returns the expression representing the implicit 'this' object. virtual const Expr *getCXXThisExpr() const { return 0; } /// \brief Returns the value of the implicit 'this' object. virtual SVal getCXXThisVal() const; virtual const FunctionDecl *getDecl() const; virtual RuntimeDefinition getRuntimeDefinition() const; virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const; static bool classof(const CallEvent *CA) { return CA->getKind() >= CE_BEG_CXX_INSTANCE_CALLS && CA->getKind() <= CE_END_CXX_INSTANCE_CALLS; } }; /// \brief Represents a non-static C++ member function call. /// /// Example: \c obj.fun() class CXXMemberCall : public CXXInstanceCall { friend class CallEventManager; protected: CXXMemberCall(const CXXMemberCallExpr *CE, ProgramStateRef St, const LocationContext *LCtx) : CXXInstanceCall(CE, St, LCtx) {} CXXMemberCall(const CXXMemberCall &Other) : CXXInstanceCall(Other) {} virtual void cloneTo(void *Dest) const { new (Dest) CXXMemberCall(*this); } public: virtual const CXXMemberCallExpr *getOriginExpr() const { return cast(CXXInstanceCall::getOriginExpr()); } virtual unsigned getNumArgs() const { if (const CallExpr *CE = getOriginExpr()) return CE->getNumArgs(); return 0; } virtual const Expr *getArgExpr(unsigned Index) const { return getOriginExpr()->getArg(Index); } virtual const Expr *getCXXThisExpr() const; virtual RuntimeDefinition getRuntimeDefinition() const; virtual Kind getKind() const { return CE_CXXMember; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_CXXMember; } }; /// \brief Represents a C++ overloaded operator call where the operator is /// implemented as a non-static member function. /// /// Example: iter + 1 class CXXMemberOperatorCall : public CXXInstanceCall { friend class CallEventManager; protected: CXXMemberOperatorCall(const CXXOperatorCallExpr *CE, ProgramStateRef St, const LocationContext *LCtx) : CXXInstanceCall(CE, St, LCtx) {} CXXMemberOperatorCall(const CXXMemberOperatorCall &Other) : CXXInstanceCall(Other) {} virtual void cloneTo(void *Dest) const { new (Dest) CXXMemberOperatorCall(*this); } public: virtual const CXXOperatorCallExpr *getOriginExpr() const { return cast(CXXInstanceCall::getOriginExpr()); } virtual unsigned getNumArgs() const { return getOriginExpr()->getNumArgs() - 1; } virtual const Expr *getArgExpr(unsigned Index) const { return getOriginExpr()->getArg(Index + 1); } virtual const Expr *getCXXThisExpr() const; virtual Kind getKind() const { return CE_CXXMemberOperator; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_CXXMemberOperator; } }; /// \brief Represents an implicit call to a C++ destructor. /// /// This can occur at the end of a scope (for automatic objects), at the end /// of a full-expression (for temporaries), or as part of a delete. class CXXDestructorCall : public CXXInstanceCall { friend class CallEventManager; protected: typedef llvm::PointerIntPair DtorDataTy; /// Creates an implicit destructor. /// /// \param DD The destructor that will be called. /// \param Trigger The statement whose completion causes this destructor call. /// \param Target The object region to be destructed. /// \param St The path-sensitive state at this point in the program. /// \param LCtx The location context at this point in the program. CXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger, const MemRegion *Target, bool IsBaseDestructor, ProgramStateRef St, const LocationContext *LCtx) : CXXInstanceCall(DD, St, LCtx) { Data = DtorDataTy(Target, IsBaseDestructor).getOpaqueValue(); Location = Trigger->getLocEnd(); } CXXDestructorCall(const CXXDestructorCall &Other) : CXXInstanceCall(Other) {} virtual void cloneTo(void *Dest) const { new (Dest) CXXDestructorCall(*this); } public: virtual SourceRange getSourceRange() const { return Location; } virtual unsigned getNumArgs() const { return 0; } virtual RuntimeDefinition getRuntimeDefinition() const; /// \brief Returns the value of the implicit 'this' object. virtual SVal getCXXThisVal() const; /// Returns true if this is a call to a base class destructor. bool isBaseDestructor() const { return DtorDataTy::getFromOpaqueValue(Data).getInt(); } virtual Kind getKind() const { return CE_CXXDestructor; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_CXXDestructor; } }; /// \brief Represents a call to a C++ constructor. /// /// Example: \c T(1) class CXXConstructorCall : public AnyFunctionCall { friend class CallEventManager; protected: /// Creates a constructor call. /// /// \param CE The constructor expression as written in the source. /// \param Target The region where the object should be constructed. If NULL, /// a new symbolic region will be used. /// \param St The path-sensitive state at this point in the program. /// \param LCtx The location context at this point in the program. CXXConstructorCall(const CXXConstructExpr *CE, const MemRegion *Target, ProgramStateRef St, const LocationContext *LCtx) : AnyFunctionCall(CE, St, LCtx) { Data = Target; } CXXConstructorCall(const CXXConstructorCall &Other) : AnyFunctionCall(Other){} virtual void cloneTo(void *Dest) const { new (Dest) CXXConstructorCall(*this); } virtual void getExtraInvalidatedValues(ValueList &Values) const; public: virtual const CXXConstructExpr *getOriginExpr() const { return cast(AnyFunctionCall::getOriginExpr()); } virtual const CXXConstructorDecl *getDecl() const { return getOriginExpr()->getConstructor(); } virtual unsigned getNumArgs() const { return getOriginExpr()->getNumArgs(); } virtual const Expr *getArgExpr(unsigned Index) const { return getOriginExpr()->getArg(Index); } /// \brief Returns the value of the implicit 'this' object. SVal getCXXThisVal() const; virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const; virtual Kind getKind() const { return CE_CXXConstructor; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_CXXConstructor; } }; /// \brief Represents the memory allocation call in a C++ new-expression. /// /// This is a call to "operator new". class CXXAllocatorCall : public AnyFunctionCall { friend class CallEventManager; protected: CXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef St, const LocationContext *LCtx) : AnyFunctionCall(E, St, LCtx) {} CXXAllocatorCall(const CXXAllocatorCall &Other) : AnyFunctionCall(Other) {} virtual void cloneTo(void *Dest) const { new (Dest) CXXAllocatorCall(*this); } public: virtual const CXXNewExpr *getOriginExpr() const { return cast(AnyFunctionCall::getOriginExpr()); } virtual const FunctionDecl *getDecl() const { return getOriginExpr()->getOperatorNew(); } virtual unsigned getNumArgs() const { return getOriginExpr()->getNumPlacementArgs() + 1; } virtual const Expr *getArgExpr(unsigned Index) const { // The first argument of an allocator call is the size of the allocation. if (Index == 0) return 0; return getOriginExpr()->getPlacementArg(Index - 1); } virtual Kind getKind() const { return CE_CXXAllocator; } static bool classof(const CallEvent *CE) { return CE->getKind() == CE_CXXAllocator; } }; /// \brief Represents the ways an Objective-C message send can occur. // // Note to maintainers: OCM_Message should always be last, since it does not // need to fit in the Data field's low bits. enum ObjCMessageKind { OCM_PropertyAccess, OCM_Subscript, OCM_Message }; /// \brief Represents any expression that calls an Objective-C method. /// /// This includes all of the kinds listed in ObjCMessageKind. class ObjCMethodCall : public CallEvent { friend class CallEventManager; const PseudoObjectExpr *getContainingPseudoObjectExpr() const; protected: ObjCMethodCall(const ObjCMessageExpr *Msg, ProgramStateRef St, const LocationContext *LCtx) : CallEvent(Msg, St, LCtx) { Data = 0; } ObjCMethodCall(const ObjCMethodCall &Other) : CallEvent(Other) {} virtual void cloneTo(void *Dest) const { new (Dest) ObjCMethodCall(*this); } virtual void getExtraInvalidatedValues(ValueList &Values) const; /// Check if the selector may have multiple definitions (may have overrides). virtual bool canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, Selector Sel) const; public: virtual const ObjCMessageExpr *getOriginExpr() const { return cast(CallEvent::getOriginExpr()); } virtual const ObjCMethodDecl *getDecl() const { return getOriginExpr()->getMethodDecl(); } virtual unsigned getNumArgs() const { return getOriginExpr()->getNumArgs(); } virtual const Expr *getArgExpr(unsigned Index) const { return getOriginExpr()->getArg(Index); } bool isInstanceMessage() const { return getOriginExpr()->isInstanceMessage(); } ObjCMethodFamily getMethodFamily() const { return getOriginExpr()->getMethodFamily(); } Selector getSelector() const { return getOriginExpr()->getSelector(); } virtual SourceRange getSourceRange() const; /// \brief Returns the value of the receiver at the time of this call. SVal getReceiverSVal() const; /// \brief Return the value of 'self' if available. SVal getSelfSVal() const; /// \brief Get the interface for the receiver. /// /// This works whether this is an instance message or a class message. /// However, it currently just uses the static type of the receiver. const ObjCInterfaceDecl *getReceiverInterface() const { return getOriginExpr()->getReceiverInterface(); } /// \brief Checks if the receiver refers to 'self' or 'super'. bool isReceiverSelfOrSuper() const; /// Returns how the message was written in the source (property access, /// subscript, or explicit message send). ObjCMessageKind getMessageKind() const; /// Returns true if this property access or subscript is a setter (has the /// form of an assignment). bool isSetter() const { switch (getMessageKind()) { case OCM_Message: llvm_unreachable("This is not a pseudo-object access!"); case OCM_PropertyAccess: return getNumArgs() > 0; case OCM_Subscript: return getNumArgs() > 1; } llvm_unreachable("Unknown message kind"); } virtual RuntimeDefinition getRuntimeDefinition() const; virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const; virtual param_iterator param_begin() const; virtual param_iterator param_end() const; virtual Kind getKind() const { return CE_ObjCMessage; } static bool classof(const CallEvent *CA) { return CA->getKind() == CE_ObjCMessage; } }; /// \brief Manages the lifetime of CallEvent objects. /// /// CallEventManager provides a way to create arbitrary CallEvents "on the /// stack" as if they were value objects by keeping a cache of CallEvent-sized /// memory blocks. The CallEvents created by CallEventManager are only valid /// for the lifetime of the OwnedCallEvent that holds them; right now these /// objects cannot be copied and ownership cannot be transferred. class CallEventManager { friend class CallEvent; llvm::BumpPtrAllocator &Alloc; SmallVector Cache; void reclaim(const void *Memory) { Cache.push_back(const_cast(Memory)); } /// Returns memory that can be initialized as a CallEvent. void *allocate() { if (Cache.empty()) return Alloc.Allocate(); else return Cache.pop_back_val(); } template T *create(Arg A, ProgramStateRef St, const LocationContext *LCtx) { return new (allocate()) T(A, St, LCtx); } template T *create(Arg1 A1, Arg2 A2, ProgramStateRef St, const LocationContext *LCtx) { return new (allocate()) T(A1, A2, St, LCtx); } template T *create(Arg1 A1, Arg2 A2, Arg3 A3, ProgramStateRef St, const LocationContext *LCtx) { return new (allocate()) T(A1, A2, A3, St, LCtx); } template T *create(Arg1 A1, Arg2 A2, Arg3 A3, Arg4 A4, ProgramStateRef St, const LocationContext *LCtx) { return new (allocate()) T(A1, A2, A3, A4, St, LCtx); } public: CallEventManager(llvm::BumpPtrAllocator &alloc) : Alloc(alloc) {} CallEventRef<> getCaller(const StackFrameContext *CalleeCtx, ProgramStateRef State); CallEventRef<> getSimpleCall(const CallExpr *E, ProgramStateRef State, const LocationContext *LCtx); CallEventRef getObjCMethodCall(const ObjCMessageExpr *E, ProgramStateRef State, const LocationContext *LCtx) { return create(E, State, LCtx); } CallEventRef getCXXConstructorCall(const CXXConstructExpr *E, const MemRegion *Target, ProgramStateRef State, const LocationContext *LCtx) { return create(E, Target, State, LCtx); } CallEventRef getCXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger, const MemRegion *Target, bool IsBase, ProgramStateRef State, const LocationContext *LCtx) { return create(DD, Trigger, Target, IsBase, State, LCtx); } CallEventRef getCXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef State, const LocationContext *LCtx) { return create(E, State, LCtx); } }; template CallEventRef CallEvent::cloneWithState(ProgramStateRef NewState) const { assert(isa(*this) && "Cloning to unrelated type"); assert(sizeof(T) == sizeof(CallEvent) && "Subclasses may not add fields"); if (NewState == State) return cast(this); CallEventManager &Mgr = State->getStateManager().getCallEventManager(); T *Copy = static_cast(Mgr.allocate()); cloneTo(Copy); assert(Copy->getKind() == this->getKind() && "Bad copy"); Copy->State = NewState; return Copy; } inline void CallEvent::Release() const { assert(RefCount > 0 && "Reference count is already zero."); --RefCount; if (RefCount > 0) return; CallEventManager &Mgr = State->getStateManager().getCallEventManager(); Mgr.reclaim(this); this->~CallEvent(); } } // end namespace ento } // end namespace clang namespace llvm { // Support isa<>, cast<>, and dyn_cast<> for CallEventRef. template struct simplify_type< clang::ento::CallEventRef > { typedef const T *SimpleType; static SimpleType getSimplifiedValue(clang::ento::CallEventRef Val) { return Val.getPtr(); } }; } #endif