//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief Defines the C++ Decl subclasses, other than those for templates /// (found in DeclTemplate.h) and friends (in DeclFriend.h). /// //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_DECLCXX_H #define LLVM_CLANG_AST_DECLCXX_H #include "clang/AST/ASTUnresolvedSet.h" #include "clang/AST/Decl.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/TypeLoc.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/Compiler.h" namespace clang { class ClassTemplateDecl; class ClassTemplateSpecializationDecl; class CXXBasePath; class CXXBasePaths; class CXXConstructorDecl; class CXXConversionDecl; class CXXDestructorDecl; class CXXMethodDecl; class CXXRecordDecl; class CXXMemberLookupCriteria; class CXXFinalOverriderMap; class CXXIndirectPrimaryBaseSet; class FriendDecl; class LambdaExpr; class UsingDecl; /// \brief Represents any kind of function declaration, whether it is a /// concrete function or a function template. class AnyFunctionDecl { NamedDecl *Function; AnyFunctionDecl(NamedDecl *ND) : Function(ND) { } public: AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { } AnyFunctionDecl(FunctionTemplateDecl *FTD); /// \brief Implicily converts any function or function template into a /// named declaration. operator NamedDecl *() const { return Function; } /// \brief Retrieve the underlying function or function template. NamedDecl *get() const { return Function; } static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) { return AnyFunctionDecl(ND); } }; } // end namespace clang namespace llvm { // Provide PointerLikeTypeTraits for non-cvr pointers. template<> class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> { public: static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) { return F.get(); } static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) { return ::clang::AnyFunctionDecl::getFromNamedDecl( static_cast< ::clang::NamedDecl*>(P)); } enum { NumLowBitsAvailable = 2 }; }; } // end namespace llvm namespace clang { /// \brief Represents an access specifier followed by colon ':'. /// /// An objects of this class represents sugar for the syntactic occurrence /// of an access specifier followed by a colon in the list of member /// specifiers of a C++ class definition. /// /// Note that they do not represent other uses of access specifiers, /// such as those occurring in a list of base specifiers. /// Also note that this class has nothing to do with so-called /// "access declarations" (C++98 11.3 [class.access.dcl]). class AccessSpecDecl : public Decl { virtual void anchor(); /// \brief The location of the ':'. SourceLocation ColonLoc; AccessSpecDecl(AccessSpecifier AS, DeclContext *DC, SourceLocation ASLoc, SourceLocation ColonLoc) : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) { setAccess(AS); } AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) { } public: /// \brief The location of the access specifier. SourceLocation getAccessSpecifierLoc() const { return getLocation(); } /// \brief Sets the location of the access specifier. void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); } /// \brief The location of the colon following the access specifier. SourceLocation getColonLoc() const { return ColonLoc; } /// \brief Sets the location of the colon. void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getAccessSpecifierLoc(), getColonLoc()); } static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS, DeclContext *DC, SourceLocation ASLoc, SourceLocation ColonLoc) { return new (C) AccessSpecDecl(AS, DC, ASLoc, ColonLoc); } static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID); // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == AccessSpec; } }; /// \brief Represents a base class of a C++ class. /// /// Each CXXBaseSpecifier represents a single, direct base class (or /// struct) of a C++ class (or struct). It specifies the type of that /// base class, whether it is a virtual or non-virtual base, and what /// level of access (public, protected, private) is used for the /// derivation. For example: /// /// \code /// class A { }; /// class B { }; /// class C : public virtual A, protected B { }; /// \endcode /// /// In this code, C will have two CXXBaseSpecifiers, one for "public /// virtual A" and the other for "protected B". class CXXBaseSpecifier { /// \brief The source code range that covers the full base /// specifier, including the "virtual" (if present) and access /// specifier (if present). SourceRange Range; /// \brief The source location of the ellipsis, if this is a pack /// expansion. SourceLocation EllipsisLoc; /// \brief Whether this is a virtual base class or not. bool Virtual : 1; /// \brief Whether this is the base of a class (true) or of a struct (false). /// /// This determines the mapping from the access specifier as written in the /// source code to the access specifier used for semantic analysis. bool BaseOfClass : 1; /// \brief Access specifier as written in the source code (may be AS_none). /// /// The actual type of data stored here is an AccessSpecifier, but we use /// "unsigned" here to work around a VC++ bug. unsigned Access : 2; /// \brief Whether the class contains a using declaration /// to inherit the named class's constructors. bool InheritConstructors : 1; /// \brief The type of the base class. /// /// This will be a class or struct (or a typedef of such). The source code /// range does not include the \c virtual or the access specifier. TypeSourceInfo *BaseTypeInfo; public: CXXBaseSpecifier() { } CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A, TypeSourceInfo *TInfo, SourceLocation EllipsisLoc) : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC), Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { } /// \brief Retrieves the source range that contains the entire base specifier. SourceRange getSourceRange() const LLVM_READONLY { return Range; } SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); } SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); } /// \brief Determines whether the base class is a virtual base class (or not). bool isVirtual() const { return Virtual; } /// \brief Determine whether this base class is a base of a class declared /// with the 'class' keyword (vs. one declared with the 'struct' keyword). bool isBaseOfClass() const { return BaseOfClass; } /// \brief Determine whether this base specifier is a pack expansion. bool isPackExpansion() const { return EllipsisLoc.isValid(); } /// \brief Determine whether this base class's constructors get inherited. bool getInheritConstructors() const { return InheritConstructors; } /// \brief Set that this base class's constructors should be inherited. void setInheritConstructors(bool Inherit = true) { InheritConstructors = Inherit; } /// \brief For a pack expansion, determine the location of the ellipsis. SourceLocation getEllipsisLoc() const { return EllipsisLoc; } /// \brief Returns the access specifier for this base specifier. /// /// This is the actual base specifier as used for semantic analysis, so /// the result can never be AS_none. To retrieve the access specifier as /// written in the source code, use getAccessSpecifierAsWritten(). AccessSpecifier getAccessSpecifier() const { if ((AccessSpecifier)Access == AS_none) return BaseOfClass? AS_private : AS_public; else return (AccessSpecifier)Access; } /// \brief Retrieves the access specifier as written in the source code /// (which may mean that no access specifier was explicitly written). /// /// Use getAccessSpecifier() to retrieve the access specifier for use in /// semantic analysis. AccessSpecifier getAccessSpecifierAsWritten() const { return (AccessSpecifier)Access; } /// \brief Retrieves the type of the base class. /// /// This type will always be an unqualified class type. QualType getType() const { return BaseTypeInfo->getType().getUnqualifiedType(); } /// \brief Retrieves the type and source location of the base class. TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; } }; /// The inheritance model to use for member pointers of a given CXXRecordDecl. enum MSInheritanceModel { MSIM_Single, MSIM_SinglePolymorphic, MSIM_Multiple, MSIM_MultiplePolymorphic, MSIM_Virtual, MSIM_Unspecified }; /// \brief Represents a C++ struct/union/class. /// /// FIXME: This class will disappear once we've properly taught RecordDecl /// to deal with C++-specific things. class CXXRecordDecl : public RecordDecl { friend void TagDecl::startDefinition(); /// Values used in DefinitionData fields to represent special members. enum SpecialMemberFlags { SMF_DefaultConstructor = 0x1, SMF_CopyConstructor = 0x2, SMF_MoveConstructor = 0x4, SMF_CopyAssignment = 0x8, SMF_MoveAssignment = 0x10, SMF_Destructor = 0x20, SMF_All = 0x3f }; struct DefinitionData { DefinitionData(CXXRecordDecl *D); /// \brief True if this class has any user-declared constructors. bool UserDeclaredConstructor : 1; /// \brief The user-declared special members which this class has. unsigned UserDeclaredSpecialMembers : 6; /// \brief True when this class is an aggregate. bool Aggregate : 1; /// \brief True when this class is a POD-type. bool PlainOldData : 1; /// true when this class is empty for traits purposes, /// i.e. has no data members other than 0-width bit-fields, has no /// virtual function/base, and doesn't inherit from a non-empty /// class. Doesn't take union-ness into account. bool Empty : 1; /// \brief True when this class is polymorphic, i.e., has at /// least one virtual member or derives from a polymorphic class. bool Polymorphic : 1; /// \brief True when this class is abstract, i.e., has at least /// one pure virtual function, (that can come from a base class). bool Abstract : 1; /// \brief True when this class has standard layout. /// /// C++11 [class]p7. A standard-layout class is a class that: /// * has no non-static data members of type non-standard-layout class (or /// array of such types) or reference, /// * has no virtual functions (10.3) and no virtual base classes (10.1), /// * has the same access control (Clause 11) for all non-static data /// members /// * has no non-standard-layout base classes, /// * either has no non-static data members in the most derived class and at /// most one base class with non-static data members, or has no base /// classes with non-static data members, and /// * has no base classes of the same type as the first non-static data /// member. bool IsStandardLayout : 1; /// \brief True when there are no non-empty base classes. /// /// This is a helper bit of state used to implement IsStandardLayout more /// efficiently. bool HasNoNonEmptyBases : 1; /// \brief True when there are private non-static data members. bool HasPrivateFields : 1; /// \brief True when there are protected non-static data members. bool HasProtectedFields : 1; /// \brief True when there are private non-static data members. bool HasPublicFields : 1; /// \brief True if this class (or any subobject) has mutable fields. bool HasMutableFields : 1; /// \brief True if there no non-field members declared by the user. bool HasOnlyCMembers : 1; /// \brief True if any field has an in-class initializer. bool HasInClassInitializer : 1; /// \brief True if any field is of reference type, and does not have an /// in-class initializer. /// /// In this case, value-initialization of this class is illegal in C++98 /// even if the class has a trivial default constructor. bool HasUninitializedReferenceMember : 1; /// \brief These flags are \c true if a defaulted corresponding special /// member can't be fully analyzed without performing overload resolution. /// @{ bool NeedOverloadResolutionForMoveConstructor : 1; bool NeedOverloadResolutionForMoveAssignment : 1; bool NeedOverloadResolutionForDestructor : 1; /// @} /// \brief These flags are \c true if an implicit defaulted corresponding /// special member would be defined as deleted. /// @{ bool DefaultedMoveConstructorIsDeleted : 1; bool DefaultedMoveAssignmentIsDeleted : 1; bool DefaultedDestructorIsDeleted : 1; /// @} /// \brief The trivial special members which this class has, per /// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25, /// C++11 [class.dtor]p5, or would have if the member were not suppressed. /// /// This excludes any user-declared but not user-provided special members /// which have been declared but not yet defined. unsigned HasTrivialSpecialMembers : 6; /// \brief The declared special members of this class which are known to be /// non-trivial. /// /// This excludes any user-declared but not user-provided special members /// which have been declared but not yet defined, and any implicit special /// members which have not yet been declared. unsigned DeclaredNonTrivialSpecialMembers : 6; /// \brief True when this class has a destructor with no semantic effect. bool HasIrrelevantDestructor : 1; /// \brief True when this class has at least one user-declared constexpr /// constructor which is neither the copy nor move constructor. bool HasConstexprNonCopyMoveConstructor : 1; /// \brief True if a defaulted default constructor for this class would /// be constexpr. bool DefaultedDefaultConstructorIsConstexpr : 1; /// \brief True if this class has a constexpr default constructor. /// /// This is true for either a user-declared constexpr default constructor /// or an implicitly declared constexpr default constructor.. bool HasConstexprDefaultConstructor : 1; /// \brief True when this class contains at least one non-static data /// member or base class of non-literal or volatile type. bool HasNonLiteralTypeFieldsOrBases : 1; /// \brief True when visible conversion functions are already computed /// and are available. bool ComputedVisibleConversions : 1; /// \brief Whether we have a C++11 user-provided default constructor (not /// explicitly deleted or defaulted). bool UserProvidedDefaultConstructor : 1; /// \brief The special members which have been declared for this class, /// either by the user or implicitly. unsigned DeclaredSpecialMembers : 6; /// \brief Whether an implicit copy constructor would have a const-qualified /// parameter. bool ImplicitCopyConstructorHasConstParam : 1; /// \brief Whether an implicit copy assignment operator would have a /// const-qualified parameter. bool ImplicitCopyAssignmentHasConstParam : 1; /// \brief Whether any declared copy constructor has a const-qualified /// parameter. bool HasDeclaredCopyConstructorWithConstParam : 1; /// \brief Whether any declared copy assignment operator has either a /// const-qualified reference parameter or a non-reference parameter. bool HasDeclaredCopyAssignmentWithConstParam : 1; /// \brief Whether this class describes a C++ lambda. bool IsLambda : 1; /// \brief The number of base class specifiers in Bases. unsigned NumBases; /// \brief The number of virtual base class specifiers in VBases. unsigned NumVBases; /// \brief Base classes of this class. /// /// FIXME: This is wasted space for a union. LazyCXXBaseSpecifiersPtr Bases; /// \brief direct and indirect virtual base classes of this class. LazyCXXBaseSpecifiersPtr VBases; /// \brief The conversion functions of this C++ class (but not its /// inherited conversion functions). /// /// Each of the entries in this overload set is a CXXConversionDecl. LazyASTUnresolvedSet Conversions; /// \brief The conversion functions of this C++ class and all those /// inherited conversion functions that are visible in this class. /// /// Each of the entries in this overload set is a CXXConversionDecl or a /// FunctionTemplateDecl. LazyASTUnresolvedSet VisibleConversions; /// \brief The declaration which defines this record. CXXRecordDecl *Definition; /// \brief The first friend declaration in this class, or null if there /// aren't any. /// /// This is actually currently stored in reverse order. LazyDeclPtr FirstFriend; /// \brief Retrieve the set of direct base classes. CXXBaseSpecifier *getBases() const { if (!Bases.isOffset()) return Bases.get(0); return getBasesSlowCase(); } /// \brief Retrieve the set of virtual base classes. CXXBaseSpecifier *getVBases() const { if (!VBases.isOffset()) return VBases.get(0); return getVBasesSlowCase(); } private: CXXBaseSpecifier *getBasesSlowCase() const; CXXBaseSpecifier *getVBasesSlowCase() const; } *DefinitionData; /// \brief Describes a C++ closure type (generated by a lambda expression). struct LambdaDefinitionData : public DefinitionData { typedef LambdaExpr::Capture Capture; LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent, bool IsGeneric, LambdaCaptureDefault CaptureDefault) : DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric), CaptureDefault(CaptureDefault), NumCaptures(0), NumExplicitCaptures(0), ManglingNumber(0), ContextDecl(0), Captures(0), MethodTyInfo(Info) { IsLambda = true; } /// \brief Whether this lambda is known to be dependent, even if its /// context isn't dependent. /// /// A lambda with a non-dependent context can be dependent if it occurs /// within the default argument of a function template, because the /// lambda will have been created with the enclosing context as its /// declaration context, rather than function. This is an unfortunate /// artifact of having to parse the default arguments before. unsigned Dependent : 1; /// \brief Whether this lambda is a generic lambda. unsigned IsGenericLambda : 1; /// \brief The Default Capture. unsigned CaptureDefault : 2; /// \brief The number of captures in this lambda is limited 2^NumCaptures. unsigned NumCaptures : 15; /// \brief The number of explicit captures in this lambda. unsigned NumExplicitCaptures : 13; /// \brief The number used to indicate this lambda expression for name /// mangling in the Itanium C++ ABI. unsigned ManglingNumber; /// \brief The declaration that provides context for this lambda, if the /// actual DeclContext does not suffice. This is used for lambdas that /// occur within default arguments of function parameters within the class /// or within a data member initializer. Decl *ContextDecl; /// \brief The list of captures, both explicit and implicit, for this /// lambda. Capture *Captures; /// \brief The type of the call method. TypeSourceInfo *MethodTyInfo; }; struct DefinitionData &data() { assert(DefinitionData && "queried property of class with no definition"); return *DefinitionData; } const struct DefinitionData &data() const { assert(DefinitionData && "queried property of class with no definition"); return *DefinitionData; } struct LambdaDefinitionData &getLambdaData() const { assert(DefinitionData && "queried property of lambda with no definition"); assert(DefinitionData->IsLambda && "queried lambda property of non-lambda class"); return static_cast(*DefinitionData); } /// \brief The template or declaration that this declaration /// describes or was instantiated from, respectively. /// /// For non-templates, this value will be null. For record /// declarations that describe a class template, this will be a /// pointer to a ClassTemplateDecl. For member /// classes of class template specializations, this will be the /// MemberSpecializationInfo referring to the member class that was /// instantiated or specialized. llvm::PointerUnion TemplateOrInstantiation; friend class DeclContext; friend class LambdaExpr; /// \brief Called from setBases and addedMember to notify the class that a /// direct or virtual base class or a member of class type has been added. void addedClassSubobject(CXXRecordDecl *Base); /// \brief Notify the class that member has been added. /// /// This routine helps maintain information about the class based on which /// members have been added. It will be invoked by DeclContext::addDecl() /// whenever a member is added to this record. void addedMember(Decl *D); void markedVirtualFunctionPure(); friend void FunctionDecl::setPure(bool); friend class ASTNodeImporter; /// \brief Get the head of our list of friend declarations, possibly /// deserializing the friends from an external AST source. FriendDecl *getFirstFriend() const; protected: CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl); public: /// \brief Iterator that traverses the base classes of a class. typedef CXXBaseSpecifier* base_class_iterator; /// \brief Iterator that traverses the base classes of a class. typedef const CXXBaseSpecifier* base_class_const_iterator; /// \brief Iterator that traverses the base classes of a class in reverse /// order. typedef std::reverse_iterator reverse_base_class_iterator; /// \brief Iterator that traverses the base classes of a class in reverse /// order. typedef std::reverse_iterator reverse_base_class_const_iterator; virtual CXXRecordDecl *getCanonicalDecl() { return cast(RecordDecl::getCanonicalDecl()); } virtual const CXXRecordDecl *getCanonicalDecl() const { return cast(RecordDecl::getCanonicalDecl()); } CXXRecordDecl *getPreviousDecl() { return cast_or_null( static_cast(this)->getPreviousDecl()); } const CXXRecordDecl *getPreviousDecl() const { return const_cast(this)->getPreviousDecl(); } CXXRecordDecl *getMostRecentDecl() { return cast( static_cast(this)->getMostRecentDecl()); } const CXXRecordDecl *getMostRecentDecl() const { return const_cast(this)->getMostRecentDecl(); } CXXRecordDecl *getDefinition() const { if (!DefinitionData) return 0; return data().Definition; } bool hasDefinition() const { return DefinitionData != 0; } static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl* PrevDecl=0, bool DelayTypeCreation = false); static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC, TypeSourceInfo *Info, SourceLocation Loc, bool DependentLambda, bool IsGeneric, LambdaCaptureDefault CaptureDefault); static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID); bool isDynamicClass() const { return data().Polymorphic || data().NumVBases != 0; } /// \brief Sets the base classes of this struct or class. void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases); /// \brief Retrieves the number of base classes of this class. unsigned getNumBases() const { return data().NumBases; } base_class_iterator bases_begin() { return data().getBases(); } base_class_const_iterator bases_begin() const { return data().getBases(); } base_class_iterator bases_end() { return bases_begin() + data().NumBases; } base_class_const_iterator bases_end() const { return bases_begin() + data().NumBases; } reverse_base_class_iterator bases_rbegin() { return reverse_base_class_iterator(bases_end()); } reverse_base_class_const_iterator bases_rbegin() const { return reverse_base_class_const_iterator(bases_end()); } reverse_base_class_iterator bases_rend() { return reverse_base_class_iterator(bases_begin()); } reverse_base_class_const_iterator bases_rend() const { return reverse_base_class_const_iterator(bases_begin()); } /// \brief Retrieves the number of virtual base classes of this class. unsigned getNumVBases() const { return data().NumVBases; } base_class_iterator vbases_begin() { return data().getVBases(); } base_class_const_iterator vbases_begin() const { return data().getVBases(); } base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; } base_class_const_iterator vbases_end() const { return vbases_begin() + data().NumVBases; } reverse_base_class_iterator vbases_rbegin() { return reverse_base_class_iterator(vbases_end()); } reverse_base_class_const_iterator vbases_rbegin() const { return reverse_base_class_const_iterator(vbases_end()); } reverse_base_class_iterator vbases_rend() { return reverse_base_class_iterator(vbases_begin()); } reverse_base_class_const_iterator vbases_rend() const { return reverse_base_class_const_iterator(vbases_begin()); } /// \brief Determine whether this class has any dependent base classes which /// are not the current instantiation. bool hasAnyDependentBases() const; /// Iterator access to method members. The method iterator visits /// all method members of the class, including non-instance methods, /// special methods, etc. typedef specific_decl_iterator method_iterator; /// \brief Method begin iterator. Iterates in the order the methods /// were declared. method_iterator method_begin() const { return method_iterator(decls_begin()); } /// \brief Method past-the-end iterator. method_iterator method_end() const { return method_iterator(decls_end()); } /// Iterator access to constructor members. typedef specific_decl_iterator ctor_iterator; ctor_iterator ctor_begin() const { return ctor_iterator(decls_begin()); } ctor_iterator ctor_end() const { return ctor_iterator(decls_end()); } /// An iterator over friend declarations. All of these are defined /// in DeclFriend.h. class friend_iterator; friend_iterator friend_begin() const; friend_iterator friend_end() const; void pushFriendDecl(FriendDecl *FD); /// Determines whether this record has any friends. bool hasFriends() const { return data().FirstFriend.isValid(); } /// \brief \c true if we know for sure that this class has a single, /// accessible, unambiguous move constructor that is not deleted. bool hasSimpleMoveConstructor() const { return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() && !data().DefaultedMoveConstructorIsDeleted; } /// \brief \c true if we know for sure that this class has a single, /// accessible, unambiguous move assignment operator that is not deleted. bool hasSimpleMoveAssignment() const { return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() && !data().DefaultedMoveAssignmentIsDeleted; } /// \brief \c true if we know for sure that this class has an accessible /// destructor that is not deleted. bool hasSimpleDestructor() const { return !hasUserDeclaredDestructor() && !data().DefaultedDestructorIsDeleted; } /// \brief Determine whether this class has any default constructors. bool hasDefaultConstructor() const { return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) || needsImplicitDefaultConstructor(); } /// \brief Determine if we need to declare a default constructor for /// this class. /// /// This value is used for lazy creation of default constructors. bool needsImplicitDefaultConstructor() const { return !data().UserDeclaredConstructor && !(data().DeclaredSpecialMembers & SMF_DefaultConstructor); } /// \brief Determine whether this class has any user-declared constructors. /// /// When true, a default constructor will not be implicitly declared. bool hasUserDeclaredConstructor() const { return data().UserDeclaredConstructor; } /// \brief Whether this class has a user-provided default constructor /// per C++11. bool hasUserProvidedDefaultConstructor() const { return data().UserProvidedDefaultConstructor; } /// \brief Determine whether this class has a user-declared copy constructor. /// /// When false, a copy constructor will be implicitly declared. bool hasUserDeclaredCopyConstructor() const { return data().UserDeclaredSpecialMembers & SMF_CopyConstructor; } /// \brief Determine whether this class needs an implicit copy /// constructor to be lazily declared. bool needsImplicitCopyConstructor() const { return !(data().DeclaredSpecialMembers & SMF_CopyConstructor); } /// \brief Determine whether we need to eagerly declare a defaulted copy /// constructor for this class. bool needsOverloadResolutionForCopyConstructor() const { return data().HasMutableFields; } /// \brief Determine whether an implicit copy constructor for this type /// would have a parameter with a const-qualified reference type. bool implicitCopyConstructorHasConstParam() const { return data().ImplicitCopyConstructorHasConstParam; } /// \brief Determine whether this class has a copy constructor with /// a parameter type which is a reference to a const-qualified type. bool hasCopyConstructorWithConstParam() const { return data().HasDeclaredCopyConstructorWithConstParam || (needsImplicitCopyConstructor() && implicitCopyConstructorHasConstParam()); } /// \brief Whether this class has a user-declared move constructor or /// assignment operator. /// /// When false, a move constructor and assignment operator may be /// implicitly declared. bool hasUserDeclaredMoveOperation() const { return data().UserDeclaredSpecialMembers & (SMF_MoveConstructor | SMF_MoveAssignment); } /// \brief Determine whether this class has had a move constructor /// declared by the user. bool hasUserDeclaredMoveConstructor() const { return data().UserDeclaredSpecialMembers & SMF_MoveConstructor; } /// \brief Determine whether this class has a move constructor. bool hasMoveConstructor() const { return (data().DeclaredSpecialMembers & SMF_MoveConstructor) || needsImplicitMoveConstructor(); } /// \brief Set that we attempted to declare an implicitly move /// constructor, but overload resolution failed so we deleted it. void setImplicitMoveConstructorIsDeleted() { assert((data().DefaultedMoveConstructorIsDeleted || needsOverloadResolutionForMoveConstructor()) && "move constructor should not be deleted"); data().DefaultedMoveConstructorIsDeleted = true; } /// \brief Determine whether this class should get an implicit move /// constructor or if any existing special member function inhibits this. bool needsImplicitMoveConstructor() const { return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) && !hasUserDeclaredCopyConstructor() && !hasUserDeclaredCopyAssignment() && !hasUserDeclaredMoveAssignment() && !hasUserDeclaredDestructor(); } /// \brief Determine whether we need to eagerly declare a defaulted move /// constructor for this class. bool needsOverloadResolutionForMoveConstructor() const { return data().NeedOverloadResolutionForMoveConstructor; } /// \brief Determine whether this class has a user-declared copy assignment /// operator. /// /// When false, a copy assigment operator will be implicitly declared. bool hasUserDeclaredCopyAssignment() const { return data().UserDeclaredSpecialMembers & SMF_CopyAssignment; } /// \brief Determine whether this class needs an implicit copy /// assignment operator to be lazily declared. bool needsImplicitCopyAssignment() const { return !(data().DeclaredSpecialMembers & SMF_CopyAssignment); } /// \brief Determine whether we need to eagerly declare a defaulted copy /// assignment operator for this class. bool needsOverloadResolutionForCopyAssignment() const { return data().HasMutableFields; } /// \brief Determine whether an implicit copy assignment operator for this /// type would have a parameter with a const-qualified reference type. bool implicitCopyAssignmentHasConstParam() const { return data().ImplicitCopyAssignmentHasConstParam; } /// \brief Determine whether this class has a copy assignment operator with /// a parameter type which is a reference to a const-qualified type or is not /// a reference. bool hasCopyAssignmentWithConstParam() const { return data().HasDeclaredCopyAssignmentWithConstParam || (needsImplicitCopyAssignment() && implicitCopyAssignmentHasConstParam()); } /// \brief Determine whether this class has had a move assignment /// declared by the user. bool hasUserDeclaredMoveAssignment() const { return data().UserDeclaredSpecialMembers & SMF_MoveAssignment; } /// \brief Determine whether this class has a move assignment operator. bool hasMoveAssignment() const { return (data().DeclaredSpecialMembers & SMF_MoveAssignment) || needsImplicitMoveAssignment(); } /// \brief Set that we attempted to declare an implicit move assignment /// operator, but overload resolution failed so we deleted it. void setImplicitMoveAssignmentIsDeleted() { assert((data().DefaultedMoveAssignmentIsDeleted || needsOverloadResolutionForMoveAssignment()) && "move assignment should not be deleted"); data().DefaultedMoveAssignmentIsDeleted = true; } /// \brief Determine whether this class should get an implicit move /// assignment operator or if any existing special member function inhibits /// this. bool needsImplicitMoveAssignment() const { return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) && !hasUserDeclaredCopyConstructor() && !hasUserDeclaredCopyAssignment() && !hasUserDeclaredMoveConstructor() && !hasUserDeclaredDestructor(); } /// \brief Determine whether we need to eagerly declare a move assignment /// operator for this class. bool needsOverloadResolutionForMoveAssignment() const { return data().NeedOverloadResolutionForMoveAssignment; } /// \brief Determine whether this class has a user-declared destructor. /// /// When false, a destructor will be implicitly declared. bool hasUserDeclaredDestructor() const { return data().UserDeclaredSpecialMembers & SMF_Destructor; } /// \brief Determine whether this class needs an implicit destructor to /// be lazily declared. bool needsImplicitDestructor() const { return !(data().DeclaredSpecialMembers & SMF_Destructor); } /// \brief Determine whether we need to eagerly declare a destructor for this /// class. bool needsOverloadResolutionForDestructor() const { return data().NeedOverloadResolutionForDestructor; } /// \brief Determine whether this class describes a lambda function object. bool isLambda() const { return hasDefinition() && data().IsLambda; } /// \brief Determine whether this class describes a generic /// lambda function object (i.e. function call operator is /// a template). bool isGenericLambda() const; /// \brief Retrieve the lambda call operator of the closure type /// if this is a closure type. CXXMethodDecl *getLambdaCallOperator() const; /// \brief Retrieve the lambda static invoker, the address of which /// is returned by the conversion operator, and the body of which /// is forwarded to the lambda call operator. CXXMethodDecl *getLambdaStaticInvoker() const; /// \brief Retrieve the generic lambda's template parameter list. /// Returns null if the class does not represent a lambda or a generic /// lambda. TemplateParameterList *getGenericLambdaTemplateParameterList() const; LambdaCaptureDefault getLambdaCaptureDefault() const { assert(isLambda()); return static_cast(getLambdaData().CaptureDefault); } /// \brief For a closure type, retrieve the mapping from captured /// variables and \c this to the non-static data members that store the /// values or references of the captures. /// /// \param Captures Will be populated with the mapping from captured /// variables to the corresponding fields. /// /// \param ThisCapture Will be set to the field declaration for the /// \c this capture. /// /// \note No entries will be added for init-captures, as they do not capture /// variables. void getCaptureFields(llvm::DenseMap &Captures, FieldDecl *&ThisCapture) const; typedef const LambdaExpr::Capture* capture_const_iterator; capture_const_iterator captures_begin() const { return isLambda() ? getLambdaData().Captures : NULL; } capture_const_iterator captures_end() const { return isLambda() ? captures_begin() + getLambdaData().NumCaptures : NULL; } typedef UnresolvedSetIterator conversion_iterator; conversion_iterator conversion_begin() const { return data().Conversions.get(getASTContext()).begin(); } conversion_iterator conversion_end() const { return data().Conversions.get(getASTContext()).end(); } /// Removes a conversion function from this class. The conversion /// function must currently be a member of this class. Furthermore, /// this class must currently be in the process of being defined. void removeConversion(const NamedDecl *Old); /// \brief Get all conversion functions visible in current class, /// including conversion function templates. std::pair getVisibleConversionFunctions(); /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]), /// which is a class with no user-declared constructors, no private /// or protected non-static data members, no base classes, and no virtual /// functions (C++ [dcl.init.aggr]p1). bool isAggregate() const { return data().Aggregate; } /// \brief Whether this class has any in-class initializers /// for non-static data members. bool hasInClassInitializer() const { return data().HasInClassInitializer; } /// \brief Whether this class or any of its subobjects has any members of /// reference type which would make value-initialization ill-formed. /// /// Per C++03 [dcl.init]p5: /// - if T is a non-union class type without a user-declared constructor, /// then every non-static data member and base-class component of T is /// value-initialized [...] A program that calls for [...] /// value-initialization of an entity of reference type is ill-formed. bool hasUninitializedReferenceMember() const { return !isUnion() && !hasUserDeclaredConstructor() && data().HasUninitializedReferenceMember; } /// \brief Whether this class is a POD-type (C++ [class]p4) /// /// For purposes of this function a class is POD if it is an aggregate /// that has no non-static non-POD data members, no reference data /// members, no user-defined copy assignment operator and no /// user-defined destructor. /// /// Note that this is the C++ TR1 definition of POD. bool isPOD() const { return data().PlainOldData; } /// \brief True if this class is C-like, without C++-specific features, e.g. /// it contains only public fields, no bases, tag kind is not 'class', etc. bool isCLike() const; /// \brief Determine whether this is an empty class in the sense of /// (C++11 [meta.unary.prop]). /// /// A non-union class is empty iff it has a virtual function, virtual base, /// data member (other than 0-width bit-field) or inherits from a non-empty /// class. /// /// \note This does NOT include a check for union-ness. bool isEmpty() const { return data().Empty; } /// Whether this class is polymorphic (C++ [class.virtual]), /// which means that the class contains or inherits a virtual function. bool isPolymorphic() const { return data().Polymorphic; } /// \brief Determine whether this class has a pure virtual function. /// /// The class is is abstract per (C++ [class.abstract]p2) if it declares /// a pure virtual function or inherits a pure virtual function that is /// not overridden. bool isAbstract() const { return data().Abstract; } /// \brief Determine whether this class has standard layout per /// (C++ [class]p7) bool isStandardLayout() const { return data().IsStandardLayout; } /// \brief Determine whether this class, or any of its class subobjects, /// contains a mutable field. bool hasMutableFields() const { return data().HasMutableFields; } /// \brief Determine whether this class has a trivial default constructor /// (C++11 [class.ctor]p5). bool hasTrivialDefaultConstructor() const { return hasDefaultConstructor() && (data().HasTrivialSpecialMembers & SMF_DefaultConstructor); } /// \brief Determine whether this class has a non-trivial default constructor /// (C++11 [class.ctor]p5). bool hasNonTrivialDefaultConstructor() const { return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) || (needsImplicitDefaultConstructor() && !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor)); } /// \brief Determine whether this class has at least one constexpr constructor /// other than the copy or move constructors. bool hasConstexprNonCopyMoveConstructor() const { return data().HasConstexprNonCopyMoveConstructor || (needsImplicitDefaultConstructor() && defaultedDefaultConstructorIsConstexpr()); } /// \brief Determine whether a defaulted default constructor for this class /// would be constexpr. bool defaultedDefaultConstructorIsConstexpr() const { return data().DefaultedDefaultConstructorIsConstexpr && (!isUnion() || hasInClassInitializer()); } /// \brief Determine whether this class has a constexpr default constructor. bool hasConstexprDefaultConstructor() const { return data().HasConstexprDefaultConstructor || (needsImplicitDefaultConstructor() && defaultedDefaultConstructorIsConstexpr()); } /// \brief Determine whether this class has a trivial copy constructor /// (C++ [class.copy]p6, C++11 [class.copy]p12) bool hasTrivialCopyConstructor() const { return data().HasTrivialSpecialMembers & SMF_CopyConstructor; } /// \brief Determine whether this class has a non-trivial copy constructor /// (C++ [class.copy]p6, C++11 [class.copy]p12) bool hasNonTrivialCopyConstructor() const { return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor || !hasTrivialCopyConstructor(); } /// \brief Determine whether this class has a trivial move constructor /// (C++11 [class.copy]p12) bool hasTrivialMoveConstructor() const { return hasMoveConstructor() && (data().HasTrivialSpecialMembers & SMF_MoveConstructor); } /// \brief Determine whether this class has a non-trivial move constructor /// (C++11 [class.copy]p12) bool hasNonTrivialMoveConstructor() const { return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) || (needsImplicitMoveConstructor() && !(data().HasTrivialSpecialMembers & SMF_MoveConstructor)); } /// \brief Determine whether this class has a trivial copy assignment operator /// (C++ [class.copy]p11, C++11 [class.copy]p25) bool hasTrivialCopyAssignment() const { return data().HasTrivialSpecialMembers & SMF_CopyAssignment; } /// \brief Determine whether this class has a non-trivial copy assignment /// operator (C++ [class.copy]p11, C++11 [class.copy]p25) bool hasNonTrivialCopyAssignment() const { return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment || !hasTrivialCopyAssignment(); } /// \brief Determine whether this class has a trivial move assignment operator /// (C++11 [class.copy]p25) bool hasTrivialMoveAssignment() const { return hasMoveAssignment() && (data().HasTrivialSpecialMembers & SMF_MoveAssignment); } /// \brief Determine whether this class has a non-trivial move assignment /// operator (C++11 [class.copy]p25) bool hasNonTrivialMoveAssignment() const { return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) || (needsImplicitMoveAssignment() && !(data().HasTrivialSpecialMembers & SMF_MoveAssignment)); } /// \brief Determine whether this class has a trivial destructor /// (C++ [class.dtor]p3) bool hasTrivialDestructor() const { return data().HasTrivialSpecialMembers & SMF_Destructor; } /// \brief Determine whether this class has a non-trivial destructor /// (C++ [class.dtor]p3) bool hasNonTrivialDestructor() const { return !(data().HasTrivialSpecialMembers & SMF_Destructor); } /// \brief Determine whether this class has a destructor which has no /// semantic effect. /// /// Any such destructor will be trivial, public, defaulted and not deleted, /// and will call only irrelevant destructors. bool hasIrrelevantDestructor() const { return data().HasIrrelevantDestructor; } /// \brief Determine whether this class has a non-literal or/ volatile type /// non-static data member or base class. bool hasNonLiteralTypeFieldsOrBases() const { return data().HasNonLiteralTypeFieldsOrBases; } /// \brief Determine whether this class is considered trivially copyable per /// (C++11 [class]p6). bool isTriviallyCopyable() const; /// \brief Determine whether this class is considered trivial. /// /// C++11 [class]p6: /// "A trivial class is a class that has a trivial default constructor and /// is trivially copiable." bool isTrivial() const { return isTriviallyCopyable() && hasTrivialDefaultConstructor(); } /// \brief Determine whether this class is a literal type. /// /// C++11 [basic.types]p10: /// A class type that has all the following properties: /// - it has a trivial destructor /// - every constructor call and full-expression in the /// brace-or-equal-intializers for non-static data members (if any) is /// a constant expression. /// - it is an aggregate type or has at least one constexpr constructor /// or constructor template that is not a copy or move constructor, and /// - all of its non-static data members and base classes are of literal /// types /// /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by /// treating types with trivial default constructors as literal types. bool isLiteral() const { return hasTrivialDestructor() && (isAggregate() || hasConstexprNonCopyMoveConstructor() || hasTrivialDefaultConstructor()) && !hasNonLiteralTypeFieldsOrBases(); } /// \brief If this record is an instantiation of a member class, /// retrieves the member class from which it was instantiated. /// /// This routine will return non-null for (non-templated) member /// classes of class templates. For example, given: /// /// \code /// template /// struct X { /// struct A { }; /// }; /// \endcode /// /// The declaration for X::A is a (non-templated) CXXRecordDecl /// whose parent is the class template specialization X. For /// this declaration, getInstantiatedFromMemberClass() will return /// the CXXRecordDecl X::A. When a complete definition of /// X::A is required, it will be instantiated from the /// declaration returned by getInstantiatedFromMemberClass(). CXXRecordDecl *getInstantiatedFromMemberClass() const; /// \brief If this class is an instantiation of a member class of a /// class template specialization, retrieves the member specialization /// information. MemberSpecializationInfo *getMemberSpecializationInfo() const { return TemplateOrInstantiation.dyn_cast(); } /// \brief Specify that this record is an instantiation of the /// member class \p RD. void setInstantiationOfMemberClass(CXXRecordDecl *RD, TemplateSpecializationKind TSK); /// \brief Retrieves the class template that is described by this /// class declaration. /// /// Every class template is represented as a ClassTemplateDecl and a /// CXXRecordDecl. The former contains template properties (such as /// the template parameter lists) while the latter contains the /// actual description of the template's /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the /// CXXRecordDecl that from a ClassTemplateDecl, while /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from /// a CXXRecordDecl. ClassTemplateDecl *getDescribedClassTemplate() const { return TemplateOrInstantiation.dyn_cast(); } void setDescribedClassTemplate(ClassTemplateDecl *Template) { TemplateOrInstantiation = Template; } /// \brief Determine whether this particular class is a specialization or /// instantiation of a class template or member class of a class template, /// and how it was instantiated or specialized. TemplateSpecializationKind getTemplateSpecializationKind() const; /// \brief Set the kind of specialization or template instantiation this is. void setTemplateSpecializationKind(TemplateSpecializationKind TSK); /// \brief Returns the destructor decl for this class. CXXDestructorDecl *getDestructor() const; /// \brief If the class is a local class [class.local], returns /// the enclosing function declaration. const FunctionDecl *isLocalClass() const { if (const CXXRecordDecl *RD = dyn_cast(getDeclContext())) return RD->isLocalClass(); return dyn_cast(getDeclContext()); } FunctionDecl *isLocalClass() { return const_cast( const_cast(this)->isLocalClass()); } /// \brief Determine whether this dependent class is a current instantiation, /// when viewed from within the given context. bool isCurrentInstantiation(const DeclContext *CurContext) const; /// \brief Determine whether this class is derived from the class \p Base. /// /// This routine only determines whether this class is derived from \p Base, /// but does not account for factors that may make a Derived -> Base class /// ill-formed, such as private/protected inheritance or multiple, ambiguous /// base class subobjects. /// /// \param Base the base class we are searching for. /// /// \returns true if this class is derived from Base, false otherwise. bool isDerivedFrom(const CXXRecordDecl *Base) const; /// \brief Determine whether this class is derived from the type \p Base. /// /// This routine only determines whether this class is derived from \p Base, /// but does not account for factors that may make a Derived -> Base class /// ill-formed, such as private/protected inheritance or multiple, ambiguous /// base class subobjects. /// /// \param Base the base class we are searching for. /// /// \param Paths will contain the paths taken from the current class to the /// given \p Base class. /// /// \returns true if this class is derived from \p Base, false otherwise. /// /// \todo add a separate paramaeter to configure IsDerivedFrom, rather than /// tangling input and output in \p Paths bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const; /// \brief Determine whether this class is virtually derived from /// the class \p Base. /// /// This routine only determines whether this class is virtually /// derived from \p Base, but does not account for factors that may /// make a Derived -> Base class ill-formed, such as /// private/protected inheritance or multiple, ambiguous base class /// subobjects. /// /// \param Base the base class we are searching for. /// /// \returns true if this class is virtually derived from Base, /// false otherwise. bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const; /// \brief Determine whether this class is provably not derived from /// the type \p Base. bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const; /// \brief Function type used by forallBases() as a callback. /// /// \param BaseDefinition the definition of the base class /// /// \returns true if this base matched the search criteria typedef bool ForallBasesCallback(const CXXRecordDecl *BaseDefinition, void *UserData); /// \brief Determines if the given callback holds for all the direct /// or indirect base classes of this type. /// /// The class itself does not count as a base class. This routine /// returns false if the class has non-computable base classes. /// /// \param BaseMatches Callback invoked for each (direct or indirect) base /// class of this type, or if \p AllowShortCircuit is true then until a call /// returns false. /// /// \param UserData Passed as the second argument of every call to /// \p BaseMatches. /// /// \param AllowShortCircuit if false, forces the callback to be called /// for every base class, even if a dependent or non-matching base was /// found. bool forallBases(ForallBasesCallback *BaseMatches, void *UserData, bool AllowShortCircuit = true) const; /// \brief Function type used by lookupInBases() to determine whether a /// specific base class subobject matches the lookup criteria. /// /// \param Specifier the base-class specifier that describes the inheritance /// from the base class we are trying to match. /// /// \param Path the current path, from the most-derived class down to the /// base named by the \p Specifier. /// /// \param UserData a single pointer to user-specified data, provided to /// lookupInBases(). /// /// \returns true if this base matched the search criteria, false otherwise. typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *UserData); /// \brief Look for entities within the base classes of this C++ class, /// transitively searching all base class subobjects. /// /// This routine uses the callback function \p BaseMatches to find base /// classes meeting some search criteria, walking all base class subobjects /// and populating the given \p Paths structure with the paths through the /// inheritance hierarchy that resulted in a match. On a successful search, /// the \p Paths structure can be queried to retrieve the matching paths and /// to determine if there were any ambiguities. /// /// \param BaseMatches callback function used to determine whether a given /// base matches the user-defined search criteria. /// /// \param UserData user data pointer that will be provided to \p BaseMatches. /// /// \param Paths used to record the paths from this class to its base class /// subobjects that match the search criteria. /// /// \returns true if there exists any path from this class to a base class /// subobject that matches the search criteria. bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData, CXXBasePaths &Paths) const; /// \brief Base-class lookup callback that determines whether the given /// base class specifier refers to a specific class declaration. /// /// This callback can be used with \c lookupInBases() to determine whether /// a given derived class has is a base class subobject of a particular type. /// The user data pointer should refer to the canonical CXXRecordDecl of the /// base class that we are searching for. static bool FindBaseClass(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *BaseRecord); /// \brief Base-class lookup callback that determines whether the /// given base class specifier refers to a specific class /// declaration and describes virtual derivation. /// /// This callback can be used with \c lookupInBases() to determine /// whether a given derived class has is a virtual base class /// subobject of a particular type. The user data pointer should /// refer to the canonical CXXRecordDecl of the base class that we /// are searching for. static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *BaseRecord); /// \brief Base-class lookup callback that determines whether there exists /// a tag with the given name. /// /// This callback can be used with \c lookupInBases() to find tag members /// of the given name within a C++ class hierarchy. The user data pointer /// is an opaque \c DeclarationName pointer. static bool FindTagMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *Name); /// \brief Base-class lookup callback that determines whether there exists /// a member with the given name. /// /// This callback can be used with \c lookupInBases() to find members /// of the given name within a C++ class hierarchy. The user data pointer /// is an opaque \c DeclarationName pointer. static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *Name); /// \brief Base-class lookup callback that determines whether there exists /// a member with the given name that can be used in a nested-name-specifier. /// /// This callback can be used with \c lookupInBases() to find membes of /// the given name within a C++ class hierarchy that can occur within /// nested-name-specifiers. static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *UserData); /// \brief Retrieve the final overriders for each virtual member /// function in the class hierarchy where this class is the /// most-derived class in the class hierarchy. void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const; /// \brief Get the indirect primary bases for this class. void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const; /// Renders and displays an inheritance diagram /// for this C++ class and all of its base classes (transitively) using /// GraphViz. void viewInheritance(ASTContext& Context) const; /// \brief Calculates the access of a decl that is reached /// along a path. static AccessSpecifier MergeAccess(AccessSpecifier PathAccess, AccessSpecifier DeclAccess) { assert(DeclAccess != AS_none); if (DeclAccess == AS_private) return AS_none; return (PathAccess > DeclAccess ? PathAccess : DeclAccess); } /// \brief Indicates that the declaration of a defaulted or deleted special /// member function is now complete. void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD); /// \brief Indicates that the definition of this class is now complete. virtual void completeDefinition(); /// \brief Indicates that the definition of this class is now complete, /// and provides a final overrider map to help determine /// /// \param FinalOverriders The final overrider map for this class, which can /// be provided as an optimization for abstract-class checking. If NULL, /// final overriders will be computed if they are needed to complete the /// definition. void completeDefinition(CXXFinalOverriderMap *FinalOverriders); /// \brief Determine whether this class may end up being abstract, even though /// it is not yet known to be abstract. /// /// \returns true if this class is not known to be abstract but has any /// base classes that are abstract. In this case, \c completeDefinition() /// will need to compute final overriders to determine whether the class is /// actually abstract. bool mayBeAbstract() const; /// \brief If this is the closure type of a lambda expression, retrieve the /// number to be used for name mangling in the Itanium C++ ABI. /// /// Zero indicates that this closure type has internal linkage, so the /// mangling number does not matter, while a non-zero value indicates which /// lambda expression this is in this particular context. unsigned getLambdaManglingNumber() const { assert(isLambda() && "Not a lambda closure type!"); return getLambdaData().ManglingNumber; } /// \brief Retrieve the declaration that provides additional context for a /// lambda, when the normal declaration context is not specific enough. /// /// Certain contexts (default arguments of in-class function parameters and /// the initializers of data members) have separate name mangling rules for /// lambdas within the Itanium C++ ABI. For these cases, this routine provides /// the declaration in which the lambda occurs, e.g., the function parameter /// or the non-static data member. Otherwise, it returns NULL to imply that /// the declaration context suffices. Decl *getLambdaContextDecl() const { assert(isLambda() && "Not a lambda closure type!"); return getLambdaData().ContextDecl; } /// \brief Set the mangling number and context declaration for a lambda /// class. void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) { getLambdaData().ManglingNumber = ManglingNumber; getLambdaData().ContextDecl = ContextDecl; } /// \brief Returns the inheritance model used for this record. MSInheritanceModel getMSInheritanceModel() const; /// \brief Determine whether this lambda expression was known to be dependent /// at the time it was created, even if its context does not appear to be /// dependent. /// /// This flag is a workaround for an issue with parsing, where default /// arguments are parsed before their enclosing function declarations have /// been created. This means that any lambda expressions within those /// default arguments will have as their DeclContext the context enclosing /// the function declaration, which may be non-dependent even when the /// function declaration itself is dependent. This flag indicates when we /// know that the lambda is dependent despite that. bool isDependentLambda() const { return isLambda() && getLambdaData().Dependent; } TypeSourceInfo *getLambdaTypeInfo() const { return getLambdaData().MethodTyInfo; } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstCXXRecord && K <= lastCXXRecord; } friend class ASTDeclReader; friend class ASTDeclWriter; friend class ASTReader; friend class ASTWriter; }; /// \brief Represents a static or instance method of a struct/union/class. /// /// In the terminology of the C++ Standard, these are the (static and /// non-static) member functions, whether virtual or not. class CXXMethodDecl : public FunctionDecl { virtual void anchor(); protected: CXXMethodDecl(Kind DK, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInline, bool isConstexpr, SourceLocation EndLocation) : FunctionDecl(DK, RD, StartLoc, NameInfo, T, TInfo, SC, isInline, isConstexpr) { if (EndLocation.isValid()) setRangeEnd(EndLocation); } public: static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInline, bool isConstexpr, SourceLocation EndLocation); static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID); bool isStatic() const; bool isInstance() const { return !isStatic(); } /// Returns true if the given operator is implicitly static in a record /// context. static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) { // [class.free]p1: // Any allocation function for a class T is a static member // (even if not explicitly declared static). // [class.free]p6 Any deallocation function for a class X is a static member // (even if not explicitly declared static). return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete || OOK == OO_Array_Delete; } bool isConst() const { return getType()->castAs()->isConst(); } bool isVolatile() const { return getType()->castAs()->isVolatile(); } bool isVirtual() const { CXXMethodDecl *CD = cast(const_cast(this)->getCanonicalDecl()); // Methods declared in interfaces are automatically (pure) virtual. if (CD->isVirtualAsWritten() || (CD->getParent()->isInterface() && CD->isUserProvided())) return true; return (CD->begin_overridden_methods() != CD->end_overridden_methods()); } /// \brief Determine whether this is a usual deallocation function /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded /// delete or delete[] operator with a particular signature. bool isUsualDeallocationFunction() const; /// \brief Determine whether this is a copy-assignment operator, regardless /// of whether it was declared implicitly or explicitly. bool isCopyAssignmentOperator() const; /// \brief Determine whether this is a move assignment operator. bool isMoveAssignmentOperator() const; CXXMethodDecl *getCanonicalDecl() { return cast(FunctionDecl::getCanonicalDecl()); } const CXXMethodDecl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } CXXMethodDecl *getMostRecentDecl() { return cast( static_cast(this)->getMostRecentDecl()); } const CXXMethodDecl *getMostRecentDecl() const { return const_cast(this)->getMostRecentDecl(); } /// True if this method is user-declared and was not /// deleted or defaulted on its first declaration. bool isUserProvided() const { return !(isDeleted() || getCanonicalDecl()->isDefaulted()); } /// void addOverriddenMethod(const CXXMethodDecl *MD); typedef const CXXMethodDecl *const* method_iterator; method_iterator begin_overridden_methods() const; method_iterator end_overridden_methods() const; unsigned size_overridden_methods() const; /// Returns the parent of this method declaration, which /// is the class in which this method is defined. const CXXRecordDecl *getParent() const { return cast(FunctionDecl::getParent()); } /// Returns the parent of this method declaration, which /// is the class in which this method is defined. CXXRecordDecl *getParent() { return const_cast( cast(FunctionDecl::getParent())); } /// \brief Returns the type of the \c this pointer. /// /// Should only be called for instance (i.e., non-static) methods. QualType getThisType(ASTContext &C) const; unsigned getTypeQualifiers() const { return getType()->getAs()->getTypeQuals(); } /// \brief Retrieve the ref-qualifier associated with this method. /// /// In the following example, \c f() has an lvalue ref-qualifier, \c g() /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier. /// @code /// struct X { /// void f() &; /// void g() &&; /// void h(); /// }; /// @endcode RefQualifierKind getRefQualifier() const { return getType()->getAs()->getRefQualifier(); } bool hasInlineBody() const; /// \brief Determine whether this is a lambda closure type's static member /// function that is used for the result of the lambda's conversion to /// function pointer (for a lambda with no captures). /// /// The function itself, if used, will have a placeholder body that will be /// supplied by IR generation to either forward to the function call operator /// or clone the function call operator. bool isLambdaStaticInvoker() const; /// \brief Find the method in \p RD that corresponds to this one. /// /// Find if \p RD or one of the classes it inherits from override this method. /// If so, return it. \p RD is assumed to be a subclass of the class defining /// this method (or be the class itself), unless \p MayBeBase is set to true. CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase = false); const CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase = false) const { return const_cast(this) ->getCorrespondingMethodInClass(RD, MayBeBase); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstCXXMethod && K <= lastCXXMethod; } }; /// \brief Represents a C++ base or member initializer. /// /// This is part of a constructor initializer that /// initializes one non-static member variable or one base class. For /// example, in the following, both 'A(a)' and 'f(3.14159)' are member /// initializers: /// /// \code /// class A { }; /// class B : public A { /// float f; /// public: /// B(A& a) : A(a), f(3.14159) { } /// }; /// \endcode class CXXCtorInitializer { /// \brief Either the base class name/delegating constructor type (stored as /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field /// (IndirectFieldDecl*) being initialized. llvm::PointerUnion3 Initializee; /// \brief The source location for the field name or, for a base initializer /// pack expansion, the location of the ellipsis. /// /// In the case of a delegating /// constructor, it will still include the type's source location as the /// Initializee points to the CXXConstructorDecl (to allow loop detection). SourceLocation MemberOrEllipsisLocation; /// \brief The argument used to initialize the base or member, which may /// end up constructing an object (when multiple arguments are involved). Stmt *Init; /// \brief Location of the left paren of the ctor-initializer. SourceLocation LParenLoc; /// \brief Location of the right paren of the ctor-initializer. SourceLocation RParenLoc; /// \brief If the initializee is a type, whether that type makes this /// a delegating initialization. bool IsDelegating : 1; /// \brief If the initializer is a base initializer, this keeps track /// of whether the base is virtual or not. bool IsVirtual : 1; /// \brief Whether or not the initializer is explicitly written /// in the sources. bool IsWritten : 1; /// If IsWritten is true, then this number keeps track of the textual order /// of this initializer in the original sources, counting from 0; otherwise, /// it stores the number of array index variables stored after this object /// in memory. unsigned SourceOrderOrNumArrayIndices : 13; CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R, VarDecl **Indices, unsigned NumIndices); public: /// \brief Creates a new base-class initializer. explicit CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual, SourceLocation L, Expr *Init, SourceLocation R, SourceLocation EllipsisLoc); /// \brief Creates a new member initializer. explicit CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R); /// \brief Creates a new anonymous field initializer. explicit CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R); /// \brief Creates a new delegating initializer. explicit CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, SourceLocation L, Expr *Init, SourceLocation R); /// \brief Creates a new member initializer that optionally contains /// array indices used to describe an elementwise initialization. static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R, VarDecl **Indices, unsigned NumIndices); /// \brief Determine whether this initializer is initializing a base class. bool isBaseInitializer() const { return Initializee.is() && !IsDelegating; } /// \brief Determine whether this initializer is initializing a non-static /// data member. bool isMemberInitializer() const { return Initializee.is(); } bool isAnyMemberInitializer() const { return isMemberInitializer() || isIndirectMemberInitializer(); } bool isIndirectMemberInitializer() const { return Initializee.is(); } /// \brief Determine whether this initializer is an implicit initializer /// generated for a field with an initializer defined on the member /// declaration. /// /// In-class member initializers (also known as "non-static data member /// initializations", NSDMIs) were introduced in C++11. bool isInClassMemberInitializer() const { return isa(Init); } /// \brief Determine whether this initializer is creating a delegating /// constructor. bool isDelegatingInitializer() const { return Initializee.is() && IsDelegating; } /// \brief Determine whether this initializer is a pack expansion. bool isPackExpansion() const { return isBaseInitializer() && MemberOrEllipsisLocation.isValid(); } // \brief For a pack expansion, returns the location of the ellipsis. SourceLocation getEllipsisLoc() const { assert(isPackExpansion() && "Initializer is not a pack expansion"); return MemberOrEllipsisLocation; } /// If this is a base class initializer, returns the type of the /// base class with location information. Otherwise, returns an NULL /// type location. TypeLoc getBaseClassLoc() const; /// If this is a base class initializer, returns the type of the base class. /// Otherwise, returns null. const Type *getBaseClass() const; /// Returns whether the base is virtual or not. bool isBaseVirtual() const { assert(isBaseInitializer() && "Must call this on base initializer!"); return IsVirtual; } /// \brief Returns the declarator information for a base class or delegating /// initializer. TypeSourceInfo *getTypeSourceInfo() const { return Initializee.dyn_cast(); } /// \brief If this is a member initializer, returns the declaration of the /// non-static data member being initialized. Otherwise, returns null. FieldDecl *getMember() const { if (isMemberInitializer()) return Initializee.get(); return 0; } FieldDecl *getAnyMember() const { if (isMemberInitializer()) return Initializee.get(); if (isIndirectMemberInitializer()) return Initializee.get()->getAnonField(); return 0; } IndirectFieldDecl *getIndirectMember() const { if (isIndirectMemberInitializer()) return Initializee.get(); return 0; } SourceLocation getMemberLocation() const { return MemberOrEllipsisLocation; } /// \brief Determine the source location of the initializer. SourceLocation getSourceLocation() const; /// \brief Determine the source range covering the entire initializer. SourceRange getSourceRange() const LLVM_READONLY; /// \brief Determine whether this initializer is explicitly written /// in the source code. bool isWritten() const { return IsWritten; } /// \brief Return the source position of the initializer, counting from 0. /// If the initializer was implicit, -1 is returned. int getSourceOrder() const { return IsWritten ? static_cast(SourceOrderOrNumArrayIndices) : -1; } /// \brief Set the source order of this initializer. /// /// This can only be called once for each initializer; it cannot be called /// on an initializer having a positive number of (implicit) array indices. /// /// This assumes that the initialzier was written in the source code, and /// ensures that isWritten() returns true. void setSourceOrder(int pos) { assert(!IsWritten && "calling twice setSourceOrder() on the same initializer"); assert(SourceOrderOrNumArrayIndices == 0 && "setSourceOrder() used when there are implicit array indices"); assert(pos >= 0 && "setSourceOrder() used to make an initializer implicit"); IsWritten = true; SourceOrderOrNumArrayIndices = static_cast(pos); } SourceLocation getLParenLoc() const { return LParenLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } /// \brief Determine the number of implicit array indices used while /// described an array member initialization. unsigned getNumArrayIndices() const { return IsWritten ? 0 : SourceOrderOrNumArrayIndices; } /// \brief Retrieve a particular array index variable used to /// describe an array member initialization. VarDecl *getArrayIndex(unsigned I) { assert(I < getNumArrayIndices() && "Out of bounds member array index"); return reinterpret_cast(this + 1)[I]; } const VarDecl *getArrayIndex(unsigned I) const { assert(I < getNumArrayIndices() && "Out of bounds member array index"); return reinterpret_cast(this + 1)[I]; } void setArrayIndex(unsigned I, VarDecl *Index) { assert(I < getNumArrayIndices() && "Out of bounds member array index"); reinterpret_cast(this + 1)[I] = Index; } ArrayRef getArrayIndexes() { assert(getNumArrayIndices() != 0 && "Getting indexes for non-array init"); return ArrayRef(reinterpret_cast(this + 1), getNumArrayIndices()); } /// \brief Get the initializer. Expr *getInit() const { return static_cast(Init); } }; /// \brief Represents a C++ constructor within a class. /// /// For example: /// /// \code /// class X { /// public: /// explicit X(int); // represented by a CXXConstructorDecl. /// }; /// \endcode class CXXConstructorDecl : public CXXMethodDecl { virtual void anchor(); /// \brief Whether this constructor declaration has the \c explicit keyword /// specified. bool IsExplicitSpecified : 1; /// \name Support for base and member initializers. /// \{ /// \brief The arguments used to initialize the base or member. CXXCtorInitializer **CtorInitializers; unsigned NumCtorInitializers; /// \} CXXConstructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isExplicitSpecified, bool isInline, bool isImplicitlyDeclared, bool isConstexpr) : CXXMethodDecl(CXXConstructor, RD, StartLoc, NameInfo, T, TInfo, SC_None, isInline, isConstexpr, SourceLocation()), IsExplicitSpecified(isExplicitSpecified), CtorInitializers(0), NumCtorInitializers(0) { setImplicit(isImplicitlyDeclared); } public: static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID); static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isExplicit, bool isInline, bool isImplicitlyDeclared, bool isConstexpr); /// \brief Determine whether this constructor declaration has the /// \c explicit keyword specified. bool isExplicitSpecified() const { return IsExplicitSpecified; } /// \brief Determine whether this constructor was marked "explicit" or not. bool isExplicit() const { return cast(getFirstDecl())->isExplicitSpecified(); } /// \brief Iterates through the member/base initializer list. typedef CXXCtorInitializer **init_iterator; /// \brief Iterates through the member/base initializer list. typedef CXXCtorInitializer * const * init_const_iterator; /// \brief Retrieve an iterator to the first initializer. init_iterator init_begin() { return CtorInitializers; } /// \brief Retrieve an iterator to the first initializer. init_const_iterator init_begin() const { return CtorInitializers; } /// \brief Retrieve an iterator past the last initializer. init_iterator init_end() { return CtorInitializers + NumCtorInitializers; } /// \brief Retrieve an iterator past the last initializer. init_const_iterator init_end() const { return CtorInitializers + NumCtorInitializers; } typedef std::reverse_iterator init_reverse_iterator; typedef std::reverse_iterator init_const_reverse_iterator; init_reverse_iterator init_rbegin() { return init_reverse_iterator(init_end()); } init_const_reverse_iterator init_rbegin() const { return init_const_reverse_iterator(init_end()); } init_reverse_iterator init_rend() { return init_reverse_iterator(init_begin()); } init_const_reverse_iterator init_rend() const { return init_const_reverse_iterator(init_begin()); } /// \brief Determine the number of arguments used to initialize the member /// or base. unsigned getNumCtorInitializers() const { return NumCtorInitializers; } void setNumCtorInitializers(unsigned numCtorInitializers) { NumCtorInitializers = numCtorInitializers; } void setCtorInitializers(CXXCtorInitializer ** initializers) { CtorInitializers = initializers; } /// \brief Determine whether this constructor is a delegating constructor. bool isDelegatingConstructor() const { return (getNumCtorInitializers() == 1) && CtorInitializers[0]->isDelegatingInitializer(); } /// \brief When this constructor delegates to another, retrieve the target. CXXConstructorDecl *getTargetConstructor() const; /// Whether this constructor is a default /// constructor (C++ [class.ctor]p5), which can be used to /// default-initialize a class of this type. bool isDefaultConstructor() const; /// \brief Whether this constructor is a copy constructor (C++ [class.copy]p2, /// which can be used to copy the class. /// /// \p TypeQuals will be set to the qualifiers on the /// argument type. For example, \p TypeQuals would be set to \c /// Qualifiers::Const for the following copy constructor: /// /// \code /// class X { /// public: /// X(const X&); /// }; /// \endcode bool isCopyConstructor(unsigned &TypeQuals) const; /// Whether this constructor is a copy /// constructor (C++ [class.copy]p2, which can be used to copy the /// class. bool isCopyConstructor() const { unsigned TypeQuals = 0; return isCopyConstructor(TypeQuals); } /// \brief Determine whether this constructor is a move constructor /// (C++0x [class.copy]p3), which can be used to move values of the class. /// /// \param TypeQuals If this constructor is a move constructor, will be set /// to the type qualifiers on the referent of the first parameter's type. bool isMoveConstructor(unsigned &TypeQuals) const; /// \brief Determine whether this constructor is a move constructor /// (C++0x [class.copy]p3), which can be used to move values of the class. bool isMoveConstructor() const { unsigned TypeQuals = 0; return isMoveConstructor(TypeQuals); } /// \brief Determine whether this is a copy or move constructor. /// /// \param TypeQuals Will be set to the type qualifiers on the reference /// parameter, if in fact this is a copy or move constructor. bool isCopyOrMoveConstructor(unsigned &TypeQuals) const; /// \brief Determine whether this a copy or move constructor. bool isCopyOrMoveConstructor() const { unsigned Quals; return isCopyOrMoveConstructor(Quals); } /// Whether this constructor is a /// converting constructor (C++ [class.conv.ctor]), which can be /// used for user-defined conversions. bool isConvertingConstructor(bool AllowExplicit) const; /// \brief Determine whether this is a member template specialization that /// would copy the object to itself. Such constructors are never used to copy /// an object. bool isSpecializationCopyingObject() const; /// \brief Get the constructor that this inheriting constructor is based on. const CXXConstructorDecl *getInheritedConstructor() const; /// \brief Set the constructor that this inheriting constructor is based on. void setInheritedConstructor(const CXXConstructorDecl *BaseCtor); const CXXConstructorDecl *getCanonicalDecl() const { return cast(FunctionDecl::getCanonicalDecl()); } CXXConstructorDecl *getCanonicalDecl() { return cast(FunctionDecl::getCanonicalDecl()); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == CXXConstructor; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// \brief Represents a C++ destructor within a class. /// /// For example: /// /// \code /// class X { /// public: /// ~X(); // represented by a CXXDestructorDecl. /// }; /// \endcode class CXXDestructorDecl : public CXXMethodDecl { virtual void anchor(); FunctionDecl *OperatorDelete; CXXDestructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isImplicitlyDeclared) : CXXMethodDecl(CXXDestructor, RD, StartLoc, NameInfo, T, TInfo, SC_None, isInline, /*isConstexpr=*/false, SourceLocation()), OperatorDelete(0) { setImplicit(isImplicitlyDeclared); } public: static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo* TInfo, bool isInline, bool isImplicitlyDeclared); static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID); void setOperatorDelete(FunctionDecl *OD) { OperatorDelete = OD; } const FunctionDecl *getOperatorDelete() const { return OperatorDelete; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == CXXDestructor; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// \brief Represents a C++ conversion function within a class. /// /// For example: /// /// \code /// class X { /// public: /// operator bool(); /// }; /// \endcode class CXXConversionDecl : public CXXMethodDecl { virtual void anchor(); /// Whether this conversion function declaration is marked /// "explicit", meaning that it can only be applied when the user /// explicitly wrote a cast. This is a C++0x feature. bool IsExplicitSpecified : 1; CXXConversionDecl(CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isExplicitSpecified, bool isConstexpr, SourceLocation EndLocation) : CXXMethodDecl(CXXConversion, RD, StartLoc, NameInfo, T, TInfo, SC_None, isInline, isConstexpr, EndLocation), IsExplicitSpecified(isExplicitSpecified) { } public: static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isExplicit, bool isConstexpr, SourceLocation EndLocation); static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID); /// Whether this conversion function declaration is marked /// "explicit", meaning that it can only be used for direct initialization /// (including explitly written casts). This is a C++11 feature. bool isExplicitSpecified() const { return IsExplicitSpecified; } /// \brief Whether this is an explicit conversion operator (C++11 and later). /// /// Explicit conversion operators are only considered for direct /// initialization, e.g., when the user has explicitly written a cast. bool isExplicit() const { return cast(getFirstDecl())->isExplicitSpecified(); } /// \brief Returns the type that this conversion function is converting to. QualType getConversionType() const { return getType()->getAs()->getResultType(); } /// \brief Determine whether this conversion function is a conversion from /// a lambda closure type to a block pointer. bool isLambdaToBlockPointerConversion() const; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == CXXConversion; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// \brief Represents a linkage specification. /// /// For example: /// \code /// extern "C" void foo(); /// \endcode class LinkageSpecDecl : public Decl, public DeclContext { virtual void anchor(); public: /// \brief Represents the language in a linkage specification. /// /// The values are part of the serialization ABI for /// ASTs and cannot be changed without altering that ABI. To help /// ensure a stable ABI for this, we choose the DW_LANG_ encodings /// from the dwarf standard. enum LanguageIDs { lang_c = /* DW_LANG_C */ 0x0002, lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004 }; private: /// \brief The language for this linkage specification. unsigned Language : 3; /// \brief True if this linkage spec has braces. /// /// This is needed so that hasBraces() returns the correct result while the /// linkage spec body is being parsed. Once RBraceLoc has been set this is /// not used, so it doesn't need to be serialized. unsigned HasBraces : 1; /// \brief The source location for the extern keyword. SourceLocation ExternLoc; /// \brief The source location for the right brace (if valid). SourceLocation RBraceLoc; LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, SourceLocation LangLoc, LanguageIDs lang, bool HasBraces) : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), Language(lang), HasBraces(HasBraces), ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { } public: static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation ExternLoc, SourceLocation LangLoc, LanguageIDs Lang, bool HasBraces); static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID); /// \brief Return the language specified by this linkage specification. LanguageIDs getLanguage() const { return LanguageIDs(Language); } /// \brief Set the language specified by this linkage specification. void setLanguage(LanguageIDs L) { Language = L; } /// \brief Determines whether this linkage specification had braces in /// its syntactic form. bool hasBraces() const { assert(!RBraceLoc.isValid() || HasBraces); return HasBraces; } SourceLocation getExternLoc() const { return ExternLoc; } SourceLocation getRBraceLoc() const { return RBraceLoc; } void setExternLoc(SourceLocation L) { ExternLoc = L; } void setRBraceLoc(SourceLocation L) { RBraceLoc = L; HasBraces = RBraceLoc.isValid(); } SourceLocation getLocEnd() const LLVM_READONLY { if (hasBraces()) return getRBraceLoc(); // No braces: get the end location of the (only) declaration in context // (if present). return decls_empty() ? getLocation() : decls_begin()->getLocEnd(); } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(ExternLoc, getLocEnd()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == LinkageSpec; } static DeclContext *castToDeclContext(const LinkageSpecDecl *D) { return static_cast(const_cast(D)); } static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// \brief Represents C++ using-directive. /// /// For example: /// \code /// using namespace std; /// \endcode /// /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide /// artificial names for all using-directives in order to store /// them in DeclContext effectively. class UsingDirectiveDecl : public NamedDecl { virtual void anchor(); /// \brief The location of the \c using keyword. SourceLocation UsingLoc; /// \brief The location of the \c namespace keyword. SourceLocation NamespaceLoc; /// \brief The nested-name-specifier that precedes the namespace. NestedNameSpecifierLoc QualifierLoc; /// \brief The namespace nominated by this using-directive. NamedDecl *NominatedNamespace; /// Enclosing context containing both using-directive and nominated /// namespace. DeclContext *CommonAncestor; /// \brief Returns special DeclarationName used by using-directives. /// /// This is only used by DeclContext for storing UsingDirectiveDecls in /// its lookup structure. static DeclarationName getName() { return DeclarationName::getUsingDirectiveName(); } UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc, SourceLocation NamespcLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Nominated, DeclContext *CommonAncestor) : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc), NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc), NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { } public: /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace, with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; } const NamedDecl *getNominatedNamespaceAsWritten() const { return NominatedNamespace; } /// \brief Returns the namespace nominated by this using-directive. NamespaceDecl *getNominatedNamespace(); const NamespaceDecl *getNominatedNamespace() const { return const_cast(this)->getNominatedNamespace(); } /// \brief Returns the common ancestor context of this using-directive and /// its nominated namespace. DeclContext *getCommonAncestor() { return CommonAncestor; } const DeclContext *getCommonAncestor() const { return CommonAncestor; } /// \brief Return the location of the \c using keyword. SourceLocation getUsingLoc() const { return UsingLoc; } // FIXME: Could omit 'Key' in name. /// \brief Returns the location of the \c namespace keyword. SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; } /// \brief Returns the location of this using declaration's identifier. SourceLocation getIdentLocation() const { return getLocation(); } static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceLocation NamespaceLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Nominated, DeclContext *CommonAncestor); static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(UsingLoc, getLocation()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == UsingDirective; } // Friend for getUsingDirectiveName. friend class DeclContext; friend class ASTDeclReader; }; /// \brief Represents a C++ namespace alias. /// /// For example: /// /// \code /// namespace Foo = Bar; /// \endcode class NamespaceAliasDecl : public NamedDecl { virtual void anchor(); /// \brief The location of the \c namespace keyword. SourceLocation NamespaceLoc; /// \brief The location of the namespace's identifier. /// /// This is accessed by TargetNameLoc. SourceLocation IdentLoc; /// \brief The nested-name-specifier that precedes the namespace. NestedNameSpecifierLoc QualifierLoc; /// \brief The Decl that this alias points to, either a NamespaceDecl or /// a NamespaceAliasDecl. NamedDecl *Namespace; NamespaceAliasDecl(DeclContext *DC, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Namespace) : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc), QualifierLoc(QualifierLoc), Namespace(Namespace) { } friend class ASTDeclReader; public: /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace, with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// \brief Retrieve the nested-name-specifier that qualifies the /// name of the namespace. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } /// \brief Retrieve the namespace declaration aliased by this directive. NamespaceDecl *getNamespace() { if (NamespaceAliasDecl *AD = dyn_cast(Namespace)) return AD->getNamespace(); return cast(Namespace); } const NamespaceDecl *getNamespace() const { return const_cast(this)->getNamespace(); } /// Returns the location of the alias name, i.e. 'foo' in /// "namespace foo = ns::bar;". SourceLocation getAliasLoc() const { return getLocation(); } /// Returns the location of the \c namespace keyword. SourceLocation getNamespaceLoc() const { return NamespaceLoc; } /// Returns the location of the identifier in the named namespace. SourceLocation getTargetNameLoc() const { return IdentLoc; } /// \brief Retrieve the namespace that this alias refers to, which /// may either be a NamespaceDecl or a NamespaceAliasDecl. NamedDecl *getAliasedNamespace() const { return Namespace; } static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Namespace); static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID); virtual SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(NamespaceLoc, IdentLoc); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == NamespaceAlias; } }; /// \brief Represents a shadow declaration introduced into a scope by a /// (resolved) using declaration. /// /// For example, /// \code /// namespace A { /// void foo(); /// } /// namespace B { /// using A::foo; // <- a UsingDecl /// // Also creates a UsingShadowDecl for A::foo() in B /// } /// \endcode class UsingShadowDecl : public NamedDecl, public Redeclarable { virtual void anchor(); /// The referenced declaration. NamedDecl *Underlying; /// \brief The using declaration which introduced this decl or the next using /// shadow declaration contained in the aforementioned using declaration. NamedDecl *UsingOrNextShadow; friend class UsingDecl; UsingShadowDecl(DeclContext *DC, SourceLocation Loc, UsingDecl *Using, NamedDecl *Target) : NamedDecl(UsingShadow, DC, Loc, DeclarationName()), Underlying(Target), UsingOrNextShadow(reinterpret_cast(Using)) { if (Target) { setDeclName(Target->getDeclName()); IdentifierNamespace = Target->getIdentifierNamespace(); } setImplicit(); } typedef Redeclarable redeclarable_base; virtual UsingShadowDecl *getNextRedeclaration() { return RedeclLink.getNext(); } virtual UsingShadowDecl *getPreviousDeclImpl() { return getPreviousDecl(); } virtual UsingShadowDecl *getMostRecentDeclImpl() { return getMostRecentDecl(); } public: static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation Loc, UsingDecl *Using, NamedDecl *Target) { return new (C) UsingShadowDecl(DC, Loc, Using, Target); } static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID); typedef redeclarable_base::redecl_iterator redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; virtual UsingShadowDecl *getCanonicalDecl() { return getFirstDecl(); } virtual const UsingShadowDecl *getCanonicalDecl() const { return getFirstDecl(); } /// \brief Gets the underlying declaration which has been brought into the /// local scope. NamedDecl *getTargetDecl() const { return Underlying; } /// \brief Sets the underlying declaration which has been brought into the /// local scope. void setTargetDecl(NamedDecl* ND) { assert(ND && "Target decl is null!"); Underlying = ND; IdentifierNamespace = ND->getIdentifierNamespace(); } /// \brief Gets the using declaration to which this declaration is tied. UsingDecl *getUsingDecl() const; /// \brief The next using shadow declaration contained in the shadow decl /// chain of the using declaration which introduced this decl. UsingShadowDecl *getNextUsingShadowDecl() const { return dyn_cast_or_null(UsingOrNextShadow); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Decl::UsingShadow; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// \brief Represents a C++ using-declaration. /// /// For example: /// \code /// using someNameSpace::someIdentifier; /// \endcode class UsingDecl : public NamedDecl { virtual void anchor(); /// \brief The source location of the 'using' keyword itself. SourceLocation UsingLocation; /// \brief The nested-name-specifier that precedes the name. NestedNameSpecifierLoc QualifierLoc; /// \brief Provides source/type location info for the declaration name /// embedded in the ValueDecl base class. DeclarationNameLoc DNLoc; /// \brief The first shadow declaration of the shadow decl chain associated /// with this using declaration. /// /// The bool member of the pair store whether this decl has the \c typename /// keyword. llvm::PointerIntPair FirstUsingShadow; UsingDecl(DeclContext *DC, SourceLocation UL, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword) : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()), UsingLocation(UL), QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()), FirstUsingShadow(0, HasTypenameKeyword) { } public: /// \brief Return the source location of the 'using' keyword. SourceLocation getUsingLoc() const { return UsingLocation; } /// \brief Set the source location of the 'using' keyword. void setUsingLoc(SourceLocation L) { UsingLocation = L; } /// \brief Retrieve the nested-name-specifier that qualifies the name, /// with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// \brief Retrieve the nested-name-specifier that qualifies the name. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } DeclarationNameInfo getNameInfo() const { return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); } /// \brief Return true if it is a C++03 access declaration (no 'using'). bool isAccessDeclaration() const { return UsingLocation.isInvalid(); } /// \brief Return true if the using declaration has 'typename'. bool hasTypename() const { return FirstUsingShadow.getInt(); } /// \brief Sets whether the using declaration has 'typename'. void setTypename(bool TN) { FirstUsingShadow.setInt(TN); } /// \brief Iterates through the using shadow declarations associated with /// this using declaration. class shadow_iterator { /// \brief The current using shadow declaration. UsingShadowDecl *Current; public: typedef UsingShadowDecl* value_type; typedef UsingShadowDecl* reference; typedef UsingShadowDecl* pointer; typedef std::forward_iterator_tag iterator_category; typedef std::ptrdiff_t difference_type; shadow_iterator() : Current(0) { } explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { } reference operator*() const { return Current; } pointer operator->() const { return Current; } shadow_iterator& operator++() { Current = Current->getNextUsingShadowDecl(); return *this; } shadow_iterator operator++(int) { shadow_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(shadow_iterator x, shadow_iterator y) { return x.Current == y.Current; } friend bool operator!=(shadow_iterator x, shadow_iterator y) { return x.Current != y.Current; } }; shadow_iterator shadow_begin() const { return shadow_iterator(FirstUsingShadow.getPointer()); } shadow_iterator shadow_end() const { return shadow_iterator(); } /// \brief Return the number of shadowed declarations associated with this /// using declaration. unsigned shadow_size() const { return std::distance(shadow_begin(), shadow_end()); } void addShadowDecl(UsingShadowDecl *S); void removeShadowDecl(UsingShadowDecl *S); static UsingDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation UsingL, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword); static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const LLVM_READONLY; static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Using; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// \brief Represents a dependent using declaration which was not marked with /// \c typename. /// /// Unlike non-dependent using declarations, these *only* bring through /// non-types; otherwise they would break two-phase lookup. /// /// \code /// template \ class A : public Base { /// using Base::foo; /// }; /// \endcode class UnresolvedUsingValueDecl : public ValueDecl { virtual void anchor(); /// \brief The source location of the 'using' keyword SourceLocation UsingLocation; /// \brief The nested-name-specifier that precedes the name. NestedNameSpecifierLoc QualifierLoc; /// \brief Provides source/type location info for the declaration name /// embedded in the ValueDecl base class. DeclarationNameLoc DNLoc; UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty, SourceLocation UsingLoc, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo) : ValueDecl(UnresolvedUsingValue, DC, NameInfo.getLoc(), NameInfo.getName(), Ty), UsingLocation(UsingLoc), QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) { } public: /// \brief Returns the source location of the 'using' keyword. SourceLocation getUsingLoc() const { return UsingLocation; } /// \brief Set the source location of the 'using' keyword. void setUsingLoc(SourceLocation L) { UsingLocation = L; } /// \brief Return true if it is a C++03 access declaration (no 'using'). bool isAccessDeclaration() const { return UsingLocation.isInvalid(); } /// \brief Retrieve the nested-name-specifier that qualifies the name, /// with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// \brief Retrieve the nested-name-specifier that qualifies the name. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } DeclarationNameInfo getNameInfo() const { return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); } static UnresolvedUsingValueDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo); static UnresolvedUsingValueDecl * CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const LLVM_READONLY; static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == UnresolvedUsingValue; } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// \brief Represents a dependent using declaration which was marked with /// \c typename. /// /// \code /// template \ class A : public Base { /// using typename Base::foo; /// }; /// \endcode /// /// The type associated with an unresolved using typename decl is /// currently always a typename type. class UnresolvedUsingTypenameDecl : public TypeDecl { virtual void anchor(); /// \brief The source location of the 'typename' keyword SourceLocation TypenameLocation; /// \brief The nested-name-specifier that precedes the name. NestedNameSpecifierLoc QualifierLoc; UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc, SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TargetNameLoc, IdentifierInfo *TargetName) : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName, UsingLoc), TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { } friend class ASTDeclReader; public: /// \brief Returns the source location of the 'using' keyword. SourceLocation getUsingLoc() const { return getLocStart(); } /// \brief Returns the source location of the 'typename' keyword. SourceLocation getTypenameLoc() const { return TypenameLocation; } /// \brief Retrieve the nested-name-specifier that qualifies the name, /// with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// \brief Retrieve the nested-name-specifier that qualifies the name. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } static UnresolvedUsingTypenameDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TargetNameLoc, DeclarationName TargetName); static UnresolvedUsingTypenameDecl * CreateDeserialized(ASTContext &C, unsigned ID); static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; } }; /// \brief Represents a C++11 static_assert declaration. class StaticAssertDecl : public Decl { virtual void anchor(); llvm::PointerIntPair AssertExprAndFailed; StringLiteral *Message; SourceLocation RParenLoc; StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc, Expr *AssertExpr, StringLiteral *Message, SourceLocation RParenLoc, bool Failed) : Decl(StaticAssert, DC, StaticAssertLoc), AssertExprAndFailed(AssertExpr, Failed), Message(Message), RParenLoc(RParenLoc) { } public: static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StaticAssertLoc, Expr *AssertExpr, StringLiteral *Message, SourceLocation RParenLoc, bool Failed); static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID); Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); } const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); } StringLiteral *getMessage() { return Message; } const StringLiteral *getMessage() const { return Message; } bool isFailed() const { return AssertExprAndFailed.getInt(); } SourceLocation getRParenLoc() const { return RParenLoc; } SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(getLocation(), getRParenLoc()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == StaticAssert; } friend class ASTDeclReader; }; /// An instance of this class represents the declaration of a property /// member. This is a Microsoft extension to C++, first introduced in /// Visual Studio .NET 2003 as a parallel to similar features in C# /// and Managed C++. /// /// A property must always be a non-static class member. /// /// A property member superficially resembles a non-static data /// member, except preceded by a property attribute: /// __declspec(property(get=GetX, put=PutX)) int x; /// Either (but not both) of the 'get' and 'put' names may be omitted. /// /// A reference to a property is always an lvalue. If the lvalue /// undergoes lvalue-to-rvalue conversion, then a getter name is /// required, and that member is called with no arguments. /// If the lvalue is assigned into, then a setter name is required, /// and that member is called with one argument, the value assigned. /// Both operations are potentially overloaded. Compound assignments /// are permitted, as are the increment and decrement operators. /// /// The getter and putter methods are permitted to be overloaded, /// although their return and parameter types are subject to certain /// restrictions according to the type of the property. /// /// A property declared using an incomplete array type may /// additionally be subscripted, adding extra parameters to the getter /// and putter methods. class MSPropertyDecl : public DeclaratorDecl { IdentifierInfo *GetterId, *SetterId; public: MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N, QualType T, TypeSourceInfo *TInfo, SourceLocation StartL, IdentifierInfo *Getter, IdentifierInfo *Setter): DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL), GetterId(Getter), SetterId(Setter) {} static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID); static bool classof(const Decl *D) { return D->getKind() == MSProperty; } bool hasGetter() const { return GetterId != NULL; } IdentifierInfo* getGetterId() const { return GetterId; } bool hasSetter() const { return SetterId != NULL; } IdentifierInfo* getSetterId() const { return SetterId; } friend class ASTDeclReader; }; /// Insertion operator for diagnostics. This allows sending an AccessSpecifier /// into a diagnostic with <<. const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, AccessSpecifier AS); const PartialDiagnostic &operator<<(const PartialDiagnostic &DB, AccessSpecifier AS); } // end namespace clang #endif