; Test 32-bit ANDs in which the second operand is constant. ; ; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z196 | FileCheck %s ; ANDs with 1 can use NILF. define i32 @f1(i32 %a) { ; CHECK-LABEL: f1: ; CHECK: nilf %r2, 1 ; CHECK: br %r14 %and = and i32 %a, 1 ret i32 %and } ; ...but RISBLG is available as a three-address form. define i32 @f2(i32 %a, i32 %b) { ; CHECK-LABEL: f2: ; CHECK: risblg %r2, %r3, 31, 159, 0 ; CHECK: br %r14 %and = and i32 %b, 1 ret i32 %and } ; ...same for 4. define i32 @f3(i32 %a, i32 %b) { ; CHECK-LABEL: f3: ; CHECK: risblg %r2, %r3, 29, 157, 0 ; CHECK: br %r14 %and = and i32 %b, 4 ret i32 %and } ; ANDs with 5 must use NILF. define i32 @f4(i32 %a) { ; CHECK-LABEL: f4: ; CHECK: nilf %r2, 5 ; CHECK: br %r14 %and = and i32 %a, 5 ret i32 %and } ; ...a single RISBLG isn't enough. define i32 @f5(i32 %a, i32 %b) { ; CHECK-LABEL: f5: ; CHECK-NOT: risb ; CHECK: br %r14 %and = and i32 %b, 5 ret i32 %and } ; Check the highest 16-bit constant that must be handled by NILF. define i32 @f6(i32 %a) { ; CHECK-LABEL: f6: ; CHECK: nilf %r2, 65533 ; CHECK: br %r14 %and = and i32 %a, 65533 ret i32 %and } ; ...a single RISBLG isn't enough. define i32 @f7(i32 %a, i32 %b) { ; CHECK-LABEL: f7: ; CHECK-NOT: risb ; CHECK: br %r14 %and = and i32 %b, 65533 ret i32 %and } ; Check the next highest value, which can use NILF. define i32 @f8(i32 %a) { ; CHECK-LABEL: f8: ; CHECK: nilf %r2, 65534 ; CHECK: br %r14 %and = and i32 %a, 65534 ret i32 %and } ; ...although the three-address case should use RISBLG. define i32 @f9(i32 %a, i32 %b) { ; CHECK-LABEL: f9: ; CHECK: risblg %r2, %r3, 16, 158, 0 ; CHECK: br %r14 %and = and i32 %b, 65534 ret i32 %and } ; ANDs of 0xffff are zero extensions from i16. define i32 @f10(i32 %a, i32 %b) { ; CHECK-LABEL: f10: ; CHECK: llhr %r2, %r3 ; CHECK: br %r14 %and = and i32 %b, 65535 ret i32 %and } ; Check the next value up, which must again use NILF. define i32 @f11(i32 %a) { ; CHECK-LABEL: f11: ; CHECK: nilf %r2, 65536 ; CHECK: br %r14 %and = and i32 %a, 65536 ret i32 %and } ; ...but the three-address case can use RISBLG. define i32 @f12(i32 %a, i32 %b) { ; CHECK-LABEL: f12: ; CHECK: risblg %r2, %r3, 15, 143, 0 ; CHECK: br %r14 %and = and i32 %b, 65536 ret i32 %and } ; Check the lowest useful NILH value. define i32 @f13(i32 %a) { ; CHECK-LABEL: f13: ; CHECK: nilh %r2, 1 ; CHECK: br %r14 %and = and i32 %a, 131071 ret i32 %and } ; ...but RISBLG is OK in the three-address case. define i32 @f14(i32 %a, i32 %b) { ; CHECK-LABEL: f14: ; CHECK: risblg %r2, %r3, 15, 159, 0 ; CHECK: br %r14 %and = and i32 %b, 131071 ret i32 %and } ; Check the highest useful NILF value. define i32 @f15(i32 %a) { ; CHECK-LABEL: f15: ; CHECK: nilf %r2, 4294901758 ; CHECK: br %r14 %and = and i32 %a, -65538 ret i32 %and } ; Check the next value up, which is the highest useful NILH value. define i32 @f16(i32 %a) { ; CHECK-LABEL: f16: ; CHECK: nilh %r2, 65534 ; CHECK: br %r14 %and = and i32 %a, -65537 ret i32 %and } ; Check the next value up, which is the first useful NILL value. define i32 @f17(i32 %a) { ; CHECK-LABEL: f17: ; CHECK: nill %r2, 0 ; CHECK: br %r14 %and = and i32 %a, -65536 ret i32 %and } ; ...although the three-address case should use RISBLG. define i32 @f18(i32 %a, i32 %b) { ; CHECK-LABEL: f18: ; CHECK: risblg %r2, %r3, 0, 143, 0 ; CHECK: br %r14 %and = and i32 %b, -65536 ret i32 %and } ; Check the next value up again, which can still use NILL. define i32 @f19(i32 %a) { ; CHECK-LABEL: f19: ; CHECK: nill %r2, 1 ; CHECK: br %r14 %and = and i32 %a, -65535 ret i32 %and } ; Check the next value up again, which cannot use RISBLG. define i32 @f20(i32 %a, i32 %b) { ; CHECK-LABEL: f20: ; CHECK-NOT: risb ; CHECK: br %r14 %and = and i32 %b, -65534 ret i32 %and } ; Check the last useful mask, which can use NILL. define i32 @f21(i32 %a) { ; CHECK-LABEL: f21: ; CHECK: nill %r2, 65534 ; CHECK: br %r14 %and = and i32 %a, -2 ret i32 %and } ; ...or RISBLG for the three-address case. define i32 @f22(i32 %a, i32 %b) { ; CHECK-LABEL: f22: ; CHECK: risblg %r2, %r3, 0, 158, 0 ; CHECK: br %r14 %and = and i32 %b, -2 ret i32 %and } ; Test that RISBLG can be used when inserting a non-wraparound mask ; into another register. define i64 @f23(i64 %a, i32 %b) { ; CHECK-LABEL: f23: ; CHECK: risblg %r2, %r3, 30, 158, 0 ; CHECK: br %r14 %and1 = and i64 %a, -4294967296 %and2 = and i32 %b, 2 %ext = zext i32 %and2 to i64 %or = or i64 %and1, %ext ret i64 %or } ; ...and when inserting a wrap-around mask. define i64 @f24(i64 %a, i32 %b) { ; CHECK-LABEL: f24: ; CHECK: risblg %r2, %r3, 30, 156 ; CHECK: br %r14 %and1 = and i64 %a, -4294967296 %and2 = and i32 %b, -5 %ext = zext i32 %and2 to i64 %or = or i64 %and1, %ext ret i64 %or }