-- | -- Module : Data.IntervalSet -- Copyright : (c) Christoph Breitkopf 2015 - 2017 -- License : BSD-style -- Maintainer : chbreitkopf@gmail.com -- Stability : experimental -- Portability : non-portable (MPTC with FD) -- -- An implementation of sets of intervals. The intervals may -- overlap, and the implementation contains efficient search functions -- for all intervals containing a point or overlapping a given interval. -- Closed, open, and half-open intervals can be contained in the same set. -- -- It is an error to insert an empty interval into a set. This precondition is not -- checked by the various construction functions. -- -- Since many function names (but not the type name) clash with -- /Prelude/ names, this module is usually imported @qualified@, e.g. -- -- > import Data.IntervalSet.Strict (IntervalSet) -- > import qualified Data.IntervalSet.Strict as IS -- -- It offers most of the same functions as 'Data.Set', but the member type must be an -- instance of 'Interval'. The 'findMin' and 'findMax' functions deviate from their -- set counterparts in being total and returning a 'Maybe' value. -- Some functions differ in asymptotic performance (for example 'size') or have not -- been tuned for efficiency as much as their equivalents in 'Data.Set'. -- -- In addition, there are functions specific to sets of intervals, for example to search -- for all intervals containing a given point or contained in a given interval. -- -- The implementation is a red-black tree augmented with the maximum upper bound -- of all keys. -- -- Parts of this implementation are based on code from the 'Data.Map' implementation, -- (c) Daan Leijen 2002, (c) Andriy Palamarchuk 2008. -- The red-black tree deletion is based on code from llrbtree by Kazu Yamamoto. -- Of course, any errors are mine. -- {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE FlexibleContexts #-} module Data.IntervalSet ( -- * re-export Interval(..) -- * Set type , IntervalSet(..) -- instance Eq,Show,Read -- * Operators , (\\) -- * Query , null , size , member , notMember , lookupLT , lookupGT , lookupLE , lookupGE -- ** Interval query , containing , intersecting , within -- * Construction , empty , singleton -- ** Insertion , insert -- ** Delete\/Update , delete -- * Combine , union , unions , difference , intersection -- * Traversal -- ** Map , map , mapMonotonic -- ** Fold , foldr, foldl , foldl', foldr' -- * Flatten , flattenWith, flattenWithMonotonic -- * Conversion , elems -- ** Lists , toList , fromList -- ** Ordered lists , toAscList , toDescList , fromAscList , fromDistinctAscList -- * Filter , filter , partition , split , splitMember , splitAt , splitIntersecting -- * Subset , isSubsetOf, isProperSubsetOf -- * Min\/Max , findMin , findMax , findLast , deleteMin , deleteMax , deleteFindMin , deleteFindMax , minView , maxView -- * Debugging , valid ) where import Prelude hiding (null, map, filter, foldr, foldl, splitAt) import Data.Bits (shiftR, (.&.)) import qualified Data.Semigroup as Sem import Data.Monoid (Monoid(..)) import qualified Data.Foldable as Foldable import qualified Data.List as L import Control.DeepSeq import Control.Applicative ((<|>)) import Data.IntervalMap.Generic.Interval {-------------------------------------------------------------------- Operators --------------------------------------------------------------------} infixl 9 \\ -- -- | Same as 'difference'. (\\) :: (Interval k e, Ord k) => IntervalSet k -> IntervalSet k -> IntervalSet k m1 \\ m2 = difference m1 m2 -- | The Color of a tree node. data Color = R | B deriving (Eq) -- | A set of intervals of type @k@. data IntervalSet k = Nil | Node !Color !k -- key !k -- interval with maximum upper in tree !(IntervalSet k) -- left subtree !(IntervalSet k) -- right subtree instance (Eq k) => Eq (IntervalSet k) where a == b = toAscList a == toAscList b instance (Ord k) => Ord (IntervalSet k) where compare a b = compare (toAscList a) (toAscList b) instance (Interval i k, Ord i) => Sem.Semigroup (IntervalSet i) where (<>) = union sconcat = unions . Foldable.toList stimes = Sem.stimesIdempotentMonoid instance (Interval i k, Ord i) => Monoid (IntervalSet i) where mempty = empty mappend = union mconcat = unions instance Foldable.Foldable IntervalSet where fold t = go t where go Nil = mempty go (Node _ k _ l r) = go l `mappend` (k `mappend` go r) foldr = foldr foldl = foldl foldMap f t = go t where go Nil = mempty go (Node _ k _ l r) = go l `mappend` (f k `mappend` go r) instance (NFData k) => NFData (IntervalSet k) where rnf Nil = () rnf (Node _ kx _ l r) = kx `deepseq` l `deepseq` r `deepseq` () instance (Interval i k, Ord i, Read i) => Read (IntervalSet i) where readsPrec p = readParen (p > 10) $ \ r -> do ("fromList",s) <- lex r (xs,t) <- reads s return (fromList xs,t) instance (Show k) => Show (IntervalSet k) where showsPrec d m = showParen (d > 10) $ showString "fromList " . shows (toList m) isRed :: IntervalSet k -> Bool isRed (Node R _ _ _ _) = True isRed _ = False turnBlack :: IntervalSet k -> IntervalSet k turnBlack (Node R k m l r) = Node B k m l r turnBlack t = t turnRed :: IntervalSet k -> IntervalSet k turnRed Nil = error "turnRed: Leaf" turnRed (Node B k m l r) = Node R k m l r turnRed t = t -- construct node, recomputing the upper key bound. mNode :: (Interval k e) => Color -> k -> IntervalSet k -> IntervalSet k -> IntervalSet k mNode c k l r = Node c k (maxUpper k l r) l r maxUpper :: (Interval i k) => i -> IntervalSet i -> IntervalSet i -> i maxUpper k Nil Nil = k maxUpper k Nil (Node _ _ m _ _) = maxByUpper k m maxUpper k (Node _ _ m _ _) Nil = maxByUpper k m maxUpper k (Node _ _ l _ _) (Node _ _ r _ _) = maxByUpper k (maxByUpper l r) -- interval with the greatest upper bound. The lower bound is ignored! maxByUpper :: (Interval i e) => i -> i -> i maxByUpper a b = a `seq` b `seq` case compareUpperBounds a b of LT -> b _ -> a -- --------------------------------------------------------- -- | /O(1)/. The empty set. empty :: IntervalSet k empty = Nil -- | /O(1)/. A set with one entry. singleton :: k -> IntervalSet k singleton k = Node B k k Nil Nil -- | /O(1)/. Is the set empty? null :: IntervalSet k -> Bool null Nil = True null _ = False -- | /O(n)/. Number of keys in the set. -- -- Caution: unlike 'Data.Set.size', this takes linear time! size :: IntervalSet k -> Int size t = h 0 t where h n s = n `seq` case s of Nil -> n Node _ _ _ l r -> h (h n l + 1) r -- | /O(log n)/. Does the set contain the given value? See also 'notMember'. member :: (Ord k) => k -> IntervalSet k -> Bool member k Nil = k `seq` False member k (Node _ key _ l r) = case compare k key of LT -> member k l GT -> member k r EQ -> True -- | /O(log n)/. Does the set not contain the given value? See also 'member'. notMember :: (Ord k) => k -> IntervalSet k -> Bool notMember key tree = not (member key tree) -- | /O(log n)/. Find the largest key smaller than the given one. lookupLT :: (Ord k) => k -> IntervalSet k -> Maybe k lookupLT k m = go m where go Nil = Nothing go (Node _ key _ l r) | k <= key = go l | otherwise = go1 key r go1 rk Nil = Just rk go1 rk (Node _ key _ l r) | k <= key = go1 rk l | otherwise = go1 key r -- | /O(log n)/. Find the smallest key larger than the given one. lookupGT :: (Ord k) => k -> IntervalSet k -> Maybe k lookupGT k m = go m where go Nil = Nothing go (Node _ key _ l r) | k >= key = go r | otherwise = go1 key l go1 rk Nil = Just rk go1 rk (Node _ key _ l r) | k >= key = go1 rk r | otherwise = go1 key l -- | /O(log n)/. Find the largest key equal to or smaller than the given one. lookupLE :: (Ord k) => k -> IntervalSet k -> Maybe k lookupLE k m = go m where go Nil = Nothing go (Node _ key _ l r) = case compare k key of LT -> go l EQ -> Just key GT -> go1 key r go1 rk Nil = Just rk go1 rk (Node _ key _ l r) = case compare k key of LT -> go1 rk l EQ -> Just key GT -> go1 key r -- | /O(log n)/. Find the smallest key equal to or larger than the given one. lookupGE :: (Ord k) => k -> IntervalSet k -> Maybe k lookupGE k m = go m where go Nil = Nothing go (Node _ key _ l r) = case compare k key of LT -> go1 key l EQ -> Just key GT -> go r go1 rk Nil = Just rk go1 rk (Node _ key _ l r) = case compare k key of LT -> go1 key l EQ -> Just key GT -> go1 rk r -- | Return the set of all intervals containing the given point. -- This is the second element of the value of 'splitAt': -- -- > set `containing` p == let (_,s,_) = set `splitAt` p in s -- -- /O(n)/, since potentially all intervals could contain the point. -- /O(log n)/ average case. This is also the worst case for sets containing no overlapping intervals. containing :: (Interval k e) => IntervalSet k -> e -> IntervalSet k t `containing` p = p `seq` fromDistinctAscList (go [] t) where go xs Nil = xs go xs (Node _ k m l r) | p `above` m = xs -- above all intervals in the tree: no result | p `below` k = go xs l -- to the left of the lower bound: can't be in right subtree | p `inside` k = go (k : go xs r) l | otherwise = go (go xs r) l -- | Return the set of all intervals overlapping (intersecting) the given interval. -- This is the second element of the result of 'splitIntersecting': -- -- > set `intersecting` i == let (_,s,_) = set `splitIntersecting` i in s -- -- /O(n)/, since potentially all values could intersect the interval. -- /O(log n)/ average case, if few values intersect the interval. intersecting :: (Interval k e) => IntervalSet k -> k -> IntervalSet k t `intersecting` i = i `seq` fromDistinctAscList (go [] t) where go xs Nil = xs go xs (Node _ k m l r) | i `after` m = xs | i `before` k = go xs l | i `overlaps` k = go (k : go xs r) l | otherwise = go (go xs r) l -- | Return the set of all intervals which are completely inside the given interval. -- -- /O(n)/, since potentially all values could be inside the interval. -- /O(log n)/ average case, if few keys are inside the interval. within :: (Interval k e) => IntervalSet k -> k -> IntervalSet k t `within` i = i `seq` fromDistinctAscList (go [] t) where go xs Nil = xs go xs (Node _ k m l r) | i `after` m = xs | i `before` k = go xs l | i `subsumes` k = go (k : go xs r) l | otherwise = go (go xs r) l -- | /O(log n)/. Insert a new value. If the set already contains an element equal to the value, -- it is replaced by the new value. insert :: (Interval k e, Ord k) => k -> IntervalSet k -> IntervalSet k insert v s = v `seq` turnBlack (ins s) where singletonR k = Node R k k Nil Nil ins Nil = singletonR v ins (Node color k m l r) = case compare v k of LT -> balanceL color k (ins l) r GT -> balanceR color k l (ins r) EQ -> Node color v m l r balanceL :: (Interval k e) => Color -> k -> IntervalSet k -> IntervalSet k -> IntervalSet k balanceL B zk (Node R yk _ (Node R xk _ a b) c) d = mNode R yk (mNode B xk a b) (mNode B zk c d) balanceL B zk (Node R xk _ a (Node R yk _ b c)) d = mNode R yk (mNode B xk a b) (mNode B zk c d) balanceL c xk l r = mNode c xk l r balanceR :: (Interval k e) => Color -> k -> IntervalSet k -> IntervalSet k -> IntervalSet k balanceR B xk a (Node R yk _ b (Node R zk _ c d)) = mNode R yk (mNode B xk a b) (mNode B zk c d) balanceR B xk a (Node R zk _ (Node R yk _ b c) d) = mNode R yk (mNode B xk a b) (mNode B zk c d) balanceR c xk l r = mNode c xk l r -- min/max -- | /O(log n)/. Returns the minimal value in the set. findMin :: IntervalSet k -> Maybe k findMin (Node _ k _ Nil _) = Just k findMin (Node _ _ _ l _) = findMin l findMin Nil = Nothing -- | /O(log n)/. Returns the maximal value in the set. findMax :: IntervalSet k -> Maybe k findMax (Node _ k _ _ Nil) = Just k findMax (Node _ _ _ _ r) = findMax r findMax Nil = Nothing -- | Returns the interval with the largest endpoint. -- If there is more than one interval with that endpoint, -- return the rightmost. -- -- /O(n)/, since all intervals could have the same endpoint. -- /O(log n)/ average case. findLast :: (Interval k e) => IntervalSet k -> Maybe k findLast Nil = Nothing findLast t@(Node _ _ mx _ _) = go t where go (Node _ k m l r) | sameU m mx = if sameU k m then go r <|> Just k else go r <|> go l | otherwise = Nothing go Nil = Nothing sameU a b = compareUpperBounds a b == EQ -- Type to indicate whether the number of black nodes changed or stayed the same. data DeleteResult k = U !(IntervalSet k) -- Unchanged | S !(IntervalSet k) -- Shrunk unwrap :: DeleteResult k -> IntervalSet k unwrap (U m) = m unwrap (S m) = m -- DeleteResult with value data DeleteResult' k a = U' !(IntervalSet k) a | S' !(IntervalSet k) a unwrap' :: DeleteResult' k a -> IntervalSet k unwrap' (U' m _) = m unwrap' (S' m _) = m -- annotate DeleteResult with value annotate :: DeleteResult k -> a -> DeleteResult' k a annotate (U m) x = U' m x annotate (S m) x = S' m x -- | /O(log n)/. Remove the smallest element from the set. Return the empty set if the set is empty. deleteMin :: (Interval k e, Ord k) => IntervalSet k -> IntervalSet k deleteMin Nil = Nil deleteMin m = turnBlack (unwrap' (deleteMin' m)) deleteMin' :: (Interval k e, Ord k) => IntervalSet k -> DeleteResult' k k deleteMin' Nil = error "deleteMin': Nil" deleteMin' (Node B k _ Nil Nil) = S' Nil k deleteMin' (Node B k _ Nil r@(Node R _ _ _ _)) = U' (turnBlack r) k deleteMin' (Node R k _ Nil r) = U' r k deleteMin' (Node c k _ l r) = case deleteMin' l of (U' l' kv) -> U' (mNode c k l' r) kv (S' l' kv) -> annotate (unbalancedR c k l' r) kv deleteMax' :: (Interval k e, Ord k) => IntervalSet k -> DeleteResult' k k deleteMax' Nil = error "deleteMax': Nil" deleteMax' (Node B k _ Nil Nil) = S' Nil k deleteMax' (Node B k _ l@(Node R _ _ _ _) Nil) = U' (turnBlack l) k deleteMax' (Node R k _ l Nil) = U' l k deleteMax' (Node c k _ l r) = case deleteMax' r of (U' r' kv) -> U' (mNode c k l r') kv (S' r' kv) -> annotate (unbalancedL c k l r') kv -- The left tree lacks one Black node unbalancedR :: (Interval k e, Ord k) => Color -> k -> IntervalSet k -> IntervalSet k -> DeleteResult k -- Decreasing one Black node in the right unbalancedR B k l r@(Node B _ _ _ _) = S (balanceR B k l (turnRed r)) unbalancedR R k l r@(Node B _ _ _ _) = U (balanceR B k l (turnRed r)) -- Taking one Red node from the right and adding it to the right as Black unbalancedR B k l (Node R rk _ rl@(Node B _ _ _ _) rr) = U (mNode B rk (balanceR B k l (turnRed rl)) rr) unbalancedR _ _ _ _ = error "unbalancedR" unbalancedL :: (Interval k e, Ord k) => Color -> k -> IntervalSet k -> IntervalSet k -> DeleteResult k unbalancedL R k l@(Node B _ _ _ _) r = U (balanceL B k (turnRed l) r) unbalancedL B k l@(Node B _ _ _ _) r = S (balanceL B k (turnRed l) r) unbalancedL B k (Node R lk _ ll lr@(Node B _ _ _ _)) r = U (mNode B lk ll (balanceL B k (turnRed lr) r)) unbalancedL _ _ _ _ = error "unbalancedL" -- | /O(log n)/. Remove the largest element from the set. Return the empty set if the set is empty. deleteMax :: (Interval k e, Ord k) => IntervalSet k -> IntervalSet k deleteMax Nil = Nil deleteMax m = turnBlack (unwrap' (deleteMax' m)) -- | /O(log n)/. Delete and return the smallest element. deleteFindMin :: (Interval k e, Ord k) => IntervalSet k -> (k, IntervalSet k) deleteFindMin mp = case deleteMin' mp of (U' r v) -> (v, turnBlack r) (S' r v) -> (v, turnBlack r) -- | /O(log n)/. Delete and return the largest element. deleteFindMax :: (Interval k e, Ord k) => IntervalSet k -> (k, IntervalSet k) deleteFindMax mp = case deleteMax' mp of (U' r v) -> (v, turnBlack r) (S' r v) -> (v, turnBlack r) -- | /O(log n)/. Retrieves the minimal element of the set, and -- the set stripped of that element, or 'Nothing' if passed an empty set. minView :: (Interval k e, Ord k) => IntervalSet k -> Maybe (k, IntervalSet k) minView Nil = Nothing minView x = Just (deleteFindMin x) -- | /O(log n)/. Retrieves the maximal element of the set, and -- the set stripped of that element, or 'Nothing' if passed an empty set. maxView :: (Interval k e, Ord k) => IntervalSet k -> Maybe (k, IntervalSet k) maxView Nil = Nothing maxView x = Just (deleteFindMax x) -- folding -- | /O(n)/. Fold the values in the set using the given right-associative -- binary operator, such that @'foldr' f z == 'Prelude.foldr' f z . 'elems'@. foldr :: (k -> b -> b) -> b -> IntervalSet k -> b foldr _ z Nil = z foldr f z (Node _ k _ l r) = foldr f (f k (foldr f z r)) l -- | /O(n)/. A strict version of 'foldr'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldr' :: (k -> b -> b) -> b -> IntervalSet k -> b foldr' f z s = z `seq` case s of Nil -> z Node _ k _ l r -> foldr' f (f k (foldr' f z r)) l -- | /O(n)/. Fold the values in the set using the given left-associative -- binary operator, such that @'foldl' f z == 'Prelude.foldl' f z . 'elems'@. foldl :: (b -> k -> b) -> b -> IntervalSet k -> b foldl _ z Nil = z foldl f z (Node _ k _ l r) = foldl f (f (foldl f z l) k) r -- | /O(n)/. A strict version of 'foldl'. Each application of the operator is -- evaluated before using the result in the next application. This -- function is strict in the starting value. foldl' :: (b -> k -> b) -> b -> IntervalSet k -> b foldl' f z s = z `seq` case s of Nil -> z Node _ k _ l r -> foldl' f (f (foldl' f z l) k) r -- delete -- | /O(log n)/. Delete an element from the set. If the set does not contain the value, -- it is returned unchanged. delete :: (Interval k e, Ord k) => k -> IntervalSet k -> IntervalSet k delete key mp = turnBlack (unwrap (delete' key mp)) delete' :: (Interval k e, Ord k) => k -> IntervalSet k -> DeleteResult k delete' x Nil = x `seq` U Nil delete' x (Node c k _ l r) = case compare x k of LT -> case delete' x l of (U l') -> U (mNode c k l' r) (S l') -> unbalancedR c k l' r GT -> case delete' x r of (U r') -> U (mNode c k l r') (S r') -> unbalancedL c k l r' EQ -> case r of Nil -> if c == B then blackify l else U l _ -> case deleteMin' r of (U' r' rk) -> U (mNode c rk l r') (S' r' rk) -> unbalancedL c rk l r' blackify :: IntervalSet k -> DeleteResult k blackify (Node R k m l r) = U (Node B k m l r) blackify s = S s -- | /O(n+m)/. The expression (@'union' t1 t2@) takes the left-biased union of @t1@ and @t2@. -- It prefers @t1@ when duplicate elements are encountered. union :: (Interval k e, Ord k) => IntervalSet k -> IntervalSet k -> IntervalSet k union m1 m2 = fromDistinctAscList (ascListUnion (toAscList m1) (toAscList m2)) -- | The union of a list of sets: -- (@'unions' == 'Prelude.foldl' 'union' 'empty'@). unions :: (Interval k e, Ord k) => [IntervalSet k] -> IntervalSet k unions [] = empty unions [s] = s unions iss = fromDistinctAscList (head (go (L.map toAscList iss))) where go [] = [] go xs@[_] = xs go (x:y:xs) = go (ascListUnion x y : go xs) -- | /O(n+m)/. Difference of two sets. -- Return elements of the first set not existing in the second set. difference :: (Interval k e, Ord k) => IntervalSet k -> IntervalSet k -> IntervalSet k difference m1 m2 = fromDistinctAscList (ascListDifference (toAscList m1) (toAscList m2)) -- | /O(n+m)/. Intersection of two sets. -- Return elements in the first set also existing in the second set. intersection :: (Interval k e, Ord k) => IntervalSet k -> IntervalSet k -> IntervalSet k intersection m1 m2 = fromDistinctAscList (ascListIntersection (toAscList m1) (toAscList m2)) ascListUnion :: Ord k => [k] -> [k] -> [k] ascListUnion [] [] = [] ascListUnion [] ys = ys ascListUnion xs [] = xs ascListUnion xs@(x:xs') ys@(y:ys') = case compare x y of LT -> x : ascListUnion xs' ys GT -> y : ascListUnion xs ys' EQ -> x : ascListUnion xs' ys' ascListDifference :: Ord k => [k] -> [k] -> [k] ascListDifference [] _ = [] ascListDifference xs [] = xs ascListDifference xs@(xk:xs') ys@(yk:ys') = case compare xk yk of LT -> xk : ascListDifference xs' ys GT -> ascListDifference xs ys' EQ -> ascListDifference xs' ys' ascListIntersection :: Ord k => [k] -> [k] -> [k] ascListIntersection [] _ = [] ascListIntersection _ [] = [] ascListIntersection xs@(xk:xs') ys@(yk:ys') = case compare xk yk of LT -> ascListIntersection xs' ys GT -> ascListIntersection xs ys' EQ -> xk : ascListIntersection xs' ys' -- --- Conversion --- -- | /O(n)/. The list of all values contained in the set, in ascending order. toAscList :: IntervalSet k -> [k] toAscList set = toAscList' set [] toAscList' :: IntervalSet k -> [k] -> [k] toAscList' m xs = foldr (:) xs m -- | /O(n)/. The list of all values in the set, in no particular order. toList :: IntervalSet k -> [k] toList s = go s [] where go Nil xs = xs go (Node _ k _ l r) xs = k : go l (go r xs) -- | /O(n)/. The list of all values in the set, in descending order. toDescList :: IntervalSet k -> [k] toDescList m = foldl (flip (:)) [] m -- | /O(n log n)/. Build a set from a list of elements. See also 'fromAscList'. -- If the list contains duplicate values, the last value is retained. fromList :: (Interval k e, Ord k) => [k] -> IntervalSet k fromList xs = L.foldl' (flip insert) empty xs -- | /O(n)/. Build a set from an ascending list in linear time. -- /The precondition (input list is ascending) is not checked./ fromAscList :: (Interval k e, Eq k) => [k] -> IntervalSet k fromAscList xs = fromDistinctAscList (uniq xs) uniq :: Eq k => [k] -> [k] uniq [] = [] uniq (x:xs) = go x xs where go v [] = [v] go v (y:ys) | v == y = go v ys | otherwise = v : go y ys -- Strict tuple data T2 a b = T2 !a !b -- | /O(n)/. Build a set from an ascending list of distinct elements in linear time. -- /The precondition is not checked./ fromDistinctAscList :: (Interval k e) => [k] -> IntervalSet k -- exactly 2^n-1 items have height n. They can be all black -- from 2^n - 2^n-2 items have height n+1. The lowest "row" should be red. fromDistinctAscList lyst = case h (length lyst) lyst of (T2 result []) -> result _ -> error "fromDistinctAscList: list not fully consumed" where h n xs | n == 0 = T2 Nil xs | isPerfect n = buildB n xs | otherwise = buildR n (log2 n) xs buildB n xs | xs `seq` n <= 0 = error "fromDictinctAscList: buildB 0" | n == 1 = case xs of (k:xs') -> T2 (Node B k k Nil Nil) xs' _ -> error "fromDictinctAscList: buildB 1" | otherwise = case n `quot` 2 of { n' -> case buildB n' xs of { (T2 _ []) -> error "fromDictinctAscList: buildB n"; (T2 l (k:xs')) -> case buildB n' xs' of { (T2 r xs'') -> T2 (mNode B k l r) xs'' }}} buildR n d xs | d `seq` xs `seq` n == 0 = T2 Nil xs | n == 1 = case xs of (k:xs') -> T2 (Node (if d==0 then R else B) k k Nil Nil) xs' _ -> error "fromDistinctAscList: buildR 1" | otherwise = case n `quot` 2 of { n' -> case buildR n' (d-1) xs of { (T2 _ []) -> error "fromDistinctAscList: buildR n"; (T2 l (k:xs')) -> case buildR (n - (n' + 1)) (d-1) xs' of { (T2 r xs'') -> T2 (mNode B k l r) xs'' }}} -- is n a perfect binary tree size (2^m-1)? isPerfect :: Int -> Bool isPerfect n = (n .&. (n + 1)) == 0 log2 :: Int -> Int log2 m = h (-1) m where h r n | r `seq` n <= 0 = r | otherwise = h (r + 1) (n `shiftR` 1) -- | /O(n)/. List of all values in the set, in ascending order. elems :: IntervalSet k -> [k] elems s = toAscList s -- --- Mapping --- -- | /O(n log n)/. Map a function over all values in the set. -- -- The size of the result may be smaller if @f@ maps two or more distinct -- elements to the same value. map :: (Interval b e2, Ord b) => (a -> b) -> IntervalSet a -> IntervalSet b map f s = fromList [f x | x <- toList s] -- | /O(n)/. @'mapMonotonic' f s == 'map' f s@, but works only when @f@ -- is strictly monotonic. -- That is, for any values @x@ and @y@, if @x@ < @y@ then @f x@ < @f y@. -- /The precondition is not checked./ mapMonotonic :: (Interval k2 e, Ord k2) => (k1 -> k2) -> IntervalSet k1 -> IntervalSet k2 mapMonotonic _ Nil = Nil mapMonotonic f (Node c k _ l r) = mNode c (f k) (mapMonotonic f l) (mapMonotonic f r) -- | /O(n)/. Filter values satisfying a predicate. filter :: (Interval k e) => (k -> Bool) -> IntervalSet k -> IntervalSet k filter p s = fromDistinctAscList (L.filter p (toAscList s)) -- | /O(n)/. Partition the set according to a predicate. The first -- set contains all elements that satisfy the predicate, the second all -- elements that fail the predicate. See also 'split'. partition :: (Interval k e) => (k -> Bool) -> IntervalSet k -> (IntervalSet k, IntervalSet k) partition p s = let (xs,ys) = L.partition p (toAscList s) in (fromDistinctAscList xs, fromDistinctAscList ys) -- | /O(n)/. The expression (@'split' k set@) is a pair @(set1,set2)@ where -- the elements in @set1@ are smaller than @k@ and the elements in @set2@ larger than @k@. -- Any key equal to @k@ is found in neither @set1@ nor @set2@. split :: (Interval i k, Ord i) => i -> IntervalSet i -> (IntervalSet i, IntervalSet i) split x m = (l, r) where (l, _, r) = splitMember x m -- | /O(n)/. The expression (@'splitMember' k set@) splits a set just -- like 'split' but also returns @'member' k set@. splitMember :: (Interval i k, Ord i) => i -> IntervalSet i -> (IntervalSet i, Bool, IntervalSet i) splitMember x s = case span (< x) (toAscList s) of ([], []) -> (empty, False, empty) ([], y:_) | y == x -> (empty, True, deleteMin s) | otherwise -> (empty, False, s) (_, []) -> (s, False, empty) (lt, ge@(y:gt)) | y == x -> (fromDistinctAscList lt, True, fromDistinctAscList gt) | otherwise -> (fromDistinctAscList lt, False, fromDistinctAscList ge) -- Helper for building sets from distinct ascending values and subsets data Union k = UEmpty | Union !(Union k) !(Union k) | UCons !k !(Union k) | UAppend !(IntervalSet k) !(Union k) mkUnion :: Union a -> Union a -> Union a mkUnion UEmpty u = u mkUnion u UEmpty = u mkUnion u1 u2 = Union u1 u2 fromUnion :: Interval k e => Union k -> IntervalSet k fromUnion UEmpty = empty fromUnion (UCons key UEmpty) = singleton key fromUnion (UAppend set UEmpty) = turnBlack set fromUnion x = fromDistinctAscList (unfold x []) where unfold UEmpty r = r unfold (Union a b) r = unfold a (unfold b r) unfold (UCons k u) r = k : unfold u r unfold (UAppend s u) r = toAscList' s (unfold u r) -- | /O(n)/. Split around a point. -- Splits the set into three subsets: intervals below the point, -- intervals containing the point, and intervals above the point. splitAt :: (Interval i k) => IntervalSet i -> k -> (IntervalSet i, IntervalSet i, IntervalSet i) splitAt set p = (fromUnion (lower set), set `containing` p, fromUnion (higher set)) where lower Nil = UEmpty lower s@(Node _ k m l r) | p `above` m = UAppend s UEmpty | p `below` k = lower l | p `inside` k = mkUnion (lower l) (lower r) | otherwise = mkUnion (lower l) (UCons k (lower r)) higher Nil = UEmpty higher (Node _ k m l r) | p `above` m = UEmpty | p `below` k = mkUnion (higher l) (UCons k (UAppend r UEmpty)) | otherwise = higher r -- | /O(n)/. Split around an interval. -- Splits the set into three subsets: intervals below the given interval, -- intervals intersecting the given interval, and intervals above the -- given interval. splitIntersecting :: (Interval i k, Ord i) => IntervalSet i -> i -> (IntervalSet i, IntervalSet i, IntervalSet i) splitIntersecting set i = (fromUnion (lower set), set `intersecting` i, fromUnion (higher set)) where lower Nil = UEmpty lower s@(Node _ k m l r) -- whole set lower: all | i `after` m = UAppend s UEmpty -- interval before key: only from left subtree | i <= k = lower l -- interval intersects key to the right: both subtrees could contain lower intervals | i `overlaps` k = mkUnion (lower l) (lower r) -- interval to the right of the key: key and both subtrees | otherwise = mkUnion (lower l) (UCons k (lower r)) higher Nil = UEmpty higher (Node _ k m l r) -- whole set lower: nothing | i `after` m = UEmpty -- interval before key: node and complete right subtree + maybe part of the left subtree | i `before` k = mkUnion (higher l) (UCons k (UAppend r UEmpty)) -- interval overlaps or to the right of key: only from right subtree | otherwise = higher r -- subsets -- | /O(n+m)/. Is the first set a subset of the second set? -- This is always true for equal sets. isSubsetOf :: (Ord k) => IntervalSet k -> IntervalSet k -> Bool isSubsetOf set1 set2 = ascListSubset (toAscList set1) (toAscList set2) ascListSubset :: (Ord a) => [a] -> [a] -> Bool ascListSubset [] _ = True ascListSubset (_:_) [] = False ascListSubset s1@(k1:r1) (k2:r2) = case compare k1 k2 of GT -> ascListSubset s1 r2 EQ -> ascListSubset r1 r2 LT -> False -- | /O(n+m)/. Is the first set a proper subset of the second set? -- (i.e. a subset but not equal). isProperSubsetOf :: (Ord k) => IntervalSet k -> IntervalSet k -> Bool isProperSubsetOf set1 set2 = go (toAscList set1) (toAscList set2) where go [] (_:_) = True go _ [] = False go s1@(k1:r1) (k2:r2) = case compare k1 k2 of GT -> ascListSubset s1 r2 EQ -> go r1 r2 LT -> False -- | /O(n log n)/. Build a new set by combining successive values. flattenWith :: (Ord a, Interval a e) => (a -> a -> Maybe a) -> IntervalSet a -> IntervalSet a flattenWith combine set = fromList (combineSuccessive combine set) -- | /O(n)/. Build a new set by combining successive values. -- Same as 'flattenWith', but works only when the combining functions returns -- strictly monotonic values. flattenWithMonotonic :: (Interval a e) => (a -> a -> Maybe a) -> IntervalSet a -> IntervalSet a flattenWithMonotonic combine set = fromDistinctAscList (combineSuccessive combine set) combineSuccessive :: (a -> a -> Maybe a) -> IntervalSet a -> [a] combineSuccessive combine set = go (toAscList set) where go (x : xs@(_:_)) = go1 x xs go xs = xs go1 x (y:ys) = case combine x y of Nothing -> x : go1 y ys Just x' -> go1 x' ys go1 x [] = [x] -- debugging -- | The height of the tree. For testing/debugging only. height :: IntervalSet k -> Int height Nil = 0 height (Node _ _ _ l r) = 1 + max (height l) (height r) -- | The maximum height of a red-black tree with the given number of nodes. -- For testing/debugging only. maxHeight :: Int -> Int maxHeight nodes = 2 * log2 (nodes + 1) -- | Check red-black-tree and interval search augmentation invariants. -- For testing/debugging only. valid :: (Interval i k, Ord i) => IntervalSet i -> Bool valid mp = test mp && height mp <= maxHeight (size mp) && validColor mp where test Nil = True test n@(Node _ _ _ l r) = validOrder n && validMax n && test l && test r validMax (Node _ k m lo hi) = m == maxUpper k lo hi validMax Nil = True validOrder (Node _ _ _ Nil Nil) = True validOrder (Node _ k1 _ Nil (Node _ k2 _ _ _)) = k1 < k2 validOrder (Node _ k2 _ (Node _ k1 _ _ _) Nil) = k1 < k2 validOrder (Node _ k2 _ (Node _ k1 _ _ _) (Node _ k3 _ _ _)) = k1 < k2 && k2 < k3 validOrder Nil = True -- validColor parentColor blackCount tree validColor n = blackDepth n >= 0 -- return -1 if subtrees have diffrent black depths or two consecutive red nodes are encountered blackDepth :: IntervalSet k -> Int blackDepth Nil = 0 blackDepth (Node c _ _ l r) = case blackDepth l of ld -> if ld < 0 then ld else case blackDepth r of rd | rd < 0 -> rd | rd /= ld || (c == R && (isRed l || isRed r)) -> -1 | c == B -> rd + 1 | otherwise -> rd