module Math.QuantumAlgebra.QuantumPlane where
import Math.Algebra.Field.Base hiding (powers)
import Math.Algebras.VectorSpace
import Math.Algebras.TensorProduct
import Math.Algebras.Structures
import Math.Algebras.LaurentPoly
import Math.Algebras.NonCommutative
import qualified Data.List as L
qvar v = let V [(m,1)] = var v in V [(m,1 :: LaurentPoly Q)]
a = qvar "a"
b = qvar "b"
c = qvar "c"
d = qvar "d"
detq = a*dunit q'*b*c
x = qvar "x"
y = qvar "y"
u = qvar "u"
v = qvar "v"
aq20 = [y*xunit q*x*y]
newtype Aq20 v = Aq20 (NonComMonomial v) deriving (Eq,Ord)
instance (Eq v, Show v) => Show (Aq20 v) where show (Aq20 m) = show m
instance Monomial Aq20 where
var v = V [(Aq20 (NCM 1 [v]),1)]
powers (Aq20 m) = powers m
instance Algebra (LaurentPoly Q) (Aq20 String) where
unit 0 = zerov
unit x = V [(munit,x)] where munit = Aq20 (NCM 0 [])
mult x = x''' where
x' = mult $ fmap ( \(Aq20 a, Aq20 b) -> (a,b) ) x
x'' = x' %% aq20
x''' = fmap Aq20 x''
aq02 = [u^2, v^2, u*v+unit q*v*u]
newtype Aq02 v = Aq02 (NonComMonomial v) deriving (Eq,Ord)
instance (Eq v, Show v) => Show (Aq02 v) where show (Aq02 m) = show m
instance Monomial Aq02 where
var v = V [(Aq02 (NCM 1 [v]),1)]
powers (Aq02 m) = powers m
instance Algebra (LaurentPoly Q) (Aq02 String) where
unit 0 = zerov
unit x = V [(munit,x)] where munit = Aq02 (NCM 0 [])
mult x = x''' where
x' = mult $ fmap ( \(Aq02 a, Aq02 b) -> (a,b) ) x
x'' = x' %% aq02
x''' = fmap Aq02 x''
m2q = [a*bunit q'*b*a, a*cunit q'*c*a, c*dunit q'*d*c, b*dunit q'*d*b,
b*cc*b, a*dd*aunit (q'q)*b*c]
newtype M2q v = M2q (NonComMonomial v) deriving (Eq,Ord)
instance (Eq v, Show v) => Show (M2q v) where show (M2q m) = show m
instance Monomial M2q where
var v = V [(M2q (NCM 1 [v]),1)]
powers (M2q m) = powers m
instance Algebra (LaurentPoly Q) (M2q String) where
unit 0 = zerov
unit x = V [(munit,x)] where munit = M2q (NCM 0 [])
mult x = x''' where
x' = mult $ fmap ( \(M2q a, M2q b) -> (a,b) ) x
x'' = x' %% m2q
x''' = fmap M2q x''
instance Coalgebra (LaurentPoly Q) (M2q String) where
counit x = case x `bind` cu of
V [] -> 0
V [(M2q (NCM 0 []), c)] -> c
where cu "a" = 1 :: Vect (LaurentPoly Q) (M2q String)
cu "b" = 0
cu "c" = 0
cu "d" = 1
comult x = x `bind` cm
where cm "a" = a `te` a + b `te` c
cm "b" = a `te` b + b `te` d
cm "c" = c `te` a + d `te` c
cm "d" = c `te` b + d `te` d
instance Bialgebra (LaurentPoly Q) (M2q String) where {}
instance Comodule (LaurentPoly Q) (M2q String) (Aq20 String) where
coaction xy = xy `bind` ca where
ca "x" = (a `te` x) + (b `te` y)
ca "y" = (c `te` x) + (d `te` y)
sl2q = [a*bunit q'*b*a, a*cunit q'*c*a, c*dunit q'*d*c, b*dunit q'*d*b,
b*cc*b, a*dd*aunit (q'q)*b*c,
unit q*c*b + d*a 1]
newtype SL2q v = SL2q (NonComMonomial v) deriving (Eq,Ord)
instance (Eq v, Show v) => Show (SL2q v) where show (SL2q m) = show m
instance Monomial SL2q where
var v = V [(SL2q (NCM 1 [v]),1)]
powers (SL2q m) = powers m
instance Algebra (LaurentPoly Q) (SL2q String) where
unit 0 = zerov
unit x = V [(munit,x)] where munit = SL2q (NCM 0 [])
mult x = x''' where
x' = mult $ fmap ( \(SL2q a, SL2q b) -> (a,b) ) x
x'' = x' %% sl2q
x''' = fmap SL2q x''
instance Coalgebra (LaurentPoly Q) (SL2q String) where
counit x = case x `bind` cu of
V [] -> 0
V [(SL2q (NCM 0 []), c)] -> c
where cu "a" = 1 :: Vect (LaurentPoly Q) (SL2q String)
cu "b" = 0
cu "c" = 0
cu "d" = 1
comult x = x `bind` cm
where cm "a" = a `te` a + b `te` c
cm "b" = a `te` b + b `te` d
cm "c" = c `te` a + d `te` c
cm "d" = c `te` b + d `te` d
instance Bialgebra (LaurentPoly Q) (SL2q String) where {}
instance HopfAlgebra (LaurentPoly Q) (SL2q String) where
antipode x = x `bind` antipode'
where antipode' "a" = d
antipode' "b" = unit q * b
antipode' "c" = unit q' * c
antipode' "d" = a
yb x = nf $ x >>= yb' where
yb' (a,b) = case compare a b of
GT -> return (b,a)
LT -> return (b,a) + unit (qq') * return (a,b)
EQ -> unit q * return (a,a)