module Math.Combinatorics.LatinSquares where
import qualified Data.List as L
import qualified Data.Set as S
import qualified Data.Map as M
import Math.Combinatorics.Design
import Math.Algebra.Field.Base
import Math.Algebra.Field.Extension
import Math.Algebra.LinearAlgebra (fMatrix')
import Math.Combinatorics.Graph
import Math.Combinatorics.GraphAuts
import Math.Combinatorics.StronglyRegularGraph
import Math.Core.Utils (combinationsOf)
findLatinSqs :: (Eq a) => [a] -> [[[a]]]
findLatinSqs xs = findLatinSqs' 1 [xs] where
n = length xs
findLatinSqs' i rows
| i == n = [reverse rows]
| otherwise = concat [findLatinSqs' (i+1) (row:rows)
| row <- findRows (L.transpose rows) [] xs]
findRows (col:cols) ls rs = concat [findRows cols (r:ls) (L.delete r rs)
| r <- rs, r `notElem` col]
findRows [] ls _ = [reverse ls]
isLatinSq :: (Ord a) => [[a]] -> Bool
isLatinSq rows = all isOneOfEach rows && all isOneOfEach cols where
cols = L.transpose rows
isOneOfEach xs = length xs == S.size (S.fromList xs)
incidenceGraphLS l = graph (vs,es) where
n = length l
vs = [ (i, j, l ! (i,j)) | i <- [1..n], j <- [1..n] ]
es = [ [v1,v2] | [v1@(i,j,lij), v2@(i',j',lij')] <- combinationsOf 2 vs, i == i' || j == j' || lij == lij' ]
m ! (i,j) = m !! (i1) !! (j1)
incidenceGraphLS' l = graph (vs,es) where
n = length l
vs = [ (i, j) | i <- [1..n], j <- [1..n] ]
es = [ [v1,v2] | [v1@(i,j), v2@(i',j')] <- combinationsOf 2 vs, i == i' || j == j' || l' M.! (i,j) == l' M.! (i',j') ]
l' = M.fromList [ ( (i,j), l !! (i1) !! (j1) ) | i <- [1..n], j <- [1..n] ]
isOrthogonal :: (Ord a, Ord b) => [[a]] -> [[b]] -> Bool
isOrthogonal greeks latins = isOneOfEach pairs
where pairs = zip (concat greeks) (concat latins)
findMOLS k lsqs = findMOLS' k [] lsqs where
findMOLS' 0 ls _ = [reverse ls]
findMOLS' i ls (r:rs) =
if all (isOrthogonal r) ls
then findMOLS' (i1) (r:ls) rs ++ findMOLS' i ls rs
else findMOLS' i ls rs
findMOLS' _ _ [] = []
isMOLS :: (Ord a) => [[[a]]] -> Bool
isMOLS (greek:latins) = all (isOrthogonal greek) latins && isMOLS latins
isMOLS [] = True
fromProjectivePlane :: (Ord k, Num k) => Design [k] -> [[[Int]]]
fromProjectivePlane (D xs bs) = map toLS parallelClasses where
k = [x | [0,1,x] <- xs]
n = length k
parallelClasses = drop 2 $ L.groupBy (\l1 l2 -> head l1 == head l2) bs
toLS ls = let grid = M.fromList [ ((x,y),i) | (i, [0,1,mu]:ps) <- zip [1..] ls, [1,x,y] <- ps]
in fMatrix' n (\i j -> grid M.! (k !! i, k !! j))
isOA (k,n) rows =
length rows == k &&
all ( (== n^2) . length ) rows &&
all isOneOfEach [zip ri rj | [ri,rj] <- combinationsOf 2 rows ]
fromLS l =
[ concat [replicate n i | i <- [1..n] ]
, concat (replicate n [1..n])
, concat l
]
where n = length l
fromMOLS mols =
(concat [replicate n i | i <- [1..n] ]) :
(concat (replicate n [1..n]) ) :
map concat mols
where n = length $ head mols
graphOA rows = graph (vs,es) where
vs = L.transpose rows
es = [ [v1,v2] | [v1,v2] <- combinationsOf 2 vs, or (zipWith (==) v1 v2) ]
srgParamsOA (k,n) = Just ( n^2, (n1)*k, n2+(k1)*(k2), k*(k1) )