module HNum.Vector where
import Data.Functor ( )
import Control.Applicative ( )
newtype Vector a = Vector [a] deriving (Show, Eq)
vector :: [a] -> Vector a
vector = Vector
instance Functor Vector where
fmap f (Vector x) = Vector (fmap f x)
instance Applicative Vector where
pure a = Vector []
Vector fs <*> Vector xs = Vector (zipWith ($) fs xs)
instance (Num a) => Num (Vector a) where
negate v = negate <$> v
(+) v1 v2 = (+) <$> v1 <*> v2
(*) v1 v2 = (*) <$> v1 <*> v2
fromInteger n = fromInteger <$> Vector [n]
signum v = signum <$> v
abs v = abs <$> v
instance (Fractional a) => Fractional (Vector a) where
recip v = recip <$> v
(/) v1 v2 = (*) <$> v1 <*> recip v2
fromRational n = fromRational <$> Vector [n]
instance (Floating a) => Floating (Vector a) where
pi = Vector [pi]
exp v = exp <$> v
log v = log <$> v
sqrt v = sqrt <$> v
sin v = sin <$> v
cos v = cos <$> v
tan v = tan <$> v
asin v = asin <$> v
acos v = acos <$> v
atan v = atan <$> v
sinh v = sinh <$> v
cosh v = cosh <$> v
tanh v = tanh <$> v
asinh v = asinh <$> v
acosh v = acosh <$> v
atanh v = atanh <$> v
instance Foldable Vector where
foldr _ z (Vector []) = z
foldr f z (Vector xs) = foldr f z xs
foldl _ z (Vector []) = z
foldl f z (Vector xs) = foldl f z xs
class List m where
toList :: m a -> [a]
fromList :: [a] -> m a
instance List Vector where
toList (Vector xs) = xs
fromList = Vector
data Matrix a = Matrix {val :: Vector a, row :: Int, col :: Int, byRow :: Bool} deriving (Eq)
matrix :: [[a]] -> Matrix a
matrix = formMat
class Matrices m where
matForm :: m a -> [[a]]
formMat :: [[a]] -> m a
instance Matrices Matrix where
matForm (Matrix (Vector v) r c b)
| r*c /= length v = error "Matrix Dimension mismatch!"
| b = ctake c v
| otherwise = dtake c v
where ctake :: Int -> [a] -> [[a]]
ctake _ [] = []
ctake n m = take n m : ctake n (drop n m)
dtake :: Int -> [a] -> [[a]]
dtake _ [] = []
dtake n m = [ptake n m r | r <- [0..(length m `div` n 1)]]
ptake n v r = [v !! x | x <- idx v, x `mod` (length v `div` n) == r]
idx v = take (length v) [0..]
formMat [] = Matrix (Vector []) 0 0 True
formMat xs = Matrix (Vector (concat xs)) (length xs) (length (head xs)) True
instance Show a => Show (Matrix a) where
show m = "Matrix " ++ show (matForm m)
instance Functor Matrix where
fmap f mat = mat { val = fmap f (val mat) }
instance Applicative Matrix where
pure a = matrix []
mf <*> mx = mx { val = val mf <*> val mx }
instance Num a => Num (Matrix a) where
negate m = negate <$> m
(+) m n = (+) <$> m <*> n
(*) m n = (*) <$> m <*> n
fromInteger a = fromInteger <$> matrix [[a]]
signum m = signum <$> m
abs m = abs <$> m
instance Fractional a => Fractional (Matrix a) where
recip m = recip <$> m
(/) m n = (*) <$> m <*> recip n
fromRational n = fromRational <$> matrix [[n]]
instance (Floating a) => Floating (Matrix a) where
pi = matrix [[pi]]
exp v = exp <$> v
log v = log <$> v
sqrt v = sqrt <$> v
sin v = sin <$> v
cos v = cos <$> v
tan v = tan <$> v
asin v = asin <$> v
acos v = acos <$> v
atan v = atan <$> v
sinh v = sinh <$> v
cosh v = cosh <$> v
tanh v = tanh <$> v
asinh v = asinh <$> v
acosh v = acosh <$> v
atanh v = atanh <$> v
instance Foldable Matrix where
foldr _ z (Matrix (Vector []) _ _ _) = z
foldr f z (Matrix (Vector xs) _ _ _) = foldr f z xs
foldl _ z (Matrix (Vector []) _ _ _) = z
foldl f z (Matrix (Vector xs) _ _ _) = foldl f z xs
class Functor f => VecOps f where
(.+) :: Num a => f a -> a -> f a
(.-) :: Num a => f a -> a -> f a
(.*) :: Num a => f a -> a -> f a
(./) :: Fractional a => f a -> a -> f a
(.^) :: Floating a => f a -> a -> f a
(.*.) :: Num a => f a -> f a -> a
norm :: Floating a => f a -> a
class Functor f => MatOps f where
(%*%) :: Num a => f a -> f a -> f a
(%/%) :: (Eq a, Fractional a) => f a -> f a -> f a
det :: (Eq a, Fractional a) => f a -> a
inv :: (Eq a, Fractional a) => f a -> f a
transpose :: f a -> f a
instance VecOps Vector where
v .+ n = (+ n) <$> v
v .- n = (+ negate n) <$> v
v .* n = (* n) <$> v
v ./ n = (/ n) <$> v
v .^ n = (** n) <$> v
v .*. w = sum $ v * w
norm v = sqrt $ v .*. v
instance VecOps Matrix where
v .+ n = (+ n) <$> v
v .- n = (+ negate n) <$> v
v .* n = (* n) <$> v
v ./ n = (/ n) <$> v
v .^ n = (** n) <$> v
v .*. w = sum $ v * w
norm v = sqrt $ v .*. v
instance MatOps Matrix where
m %*% n | col m /= row n = error "Can't Multiply - Dimension mismatch!"
| otherwise = matrix $ matForm m %-*-% matForm n
m %/% n = m %*% inv n
det m | col m /= row m = error "Can't calculate determinant of non-square matrix"
| otherwise = detMat (matForm m)
inv m | col m /= row m = error "Can't calculate inverse of non-square matrix"
| otherwise = (matrix . invMat . matForm) m
transpose m = m {row = col m, col = row m, byRow = not (byRow m)}
bp :: Int -> Matrix a -> Matrix a
bp n m = matrix $ bpMat n (matForm m)
class Functor f => Concatable f where
hcat :: f a -> f a -> f a
vcat :: f a -> f a -> Matrix a
instance Concatable Vector where
hcat v w = fromList (toList v ++ toList w)
vcat v w = matrix (toList v : [toList w])
instance Concatable Matrix where
hcat m n | row m == row n = matrix (zipWith (++) mf nf)
| otherwise = error "Can't concatenate matrices horizontally which have different row"
where mf = matForm m
nf = matForm n
vcat m n | col m == col n = m {val = hcat (val m) (val n), row = row m + row n}
| otherwise = error "Can't concatenate matrices vertically which have different col"
(.:) :: Vector a -> Matrix a -> Matrix a
v .: m | length v == col m = matrix (toList v : matForm m)
| otherwise = error "Can't insert length(Vector) /= col(Matrix)"
transposeMat :: [[a]] -> [[a]]
transposeMat m = map (\l -> map (!! l) m) [0 .. (length (head m) 1)]
indexMat :: [[a]] -> [[(Int, Int)]]
indexMat m@(xs : xss) = do
i <- [0 .. (length m 1)]
[zip (replicate (length xs) i) [0 .. (length xs 1)]]
dropAtMat :: Int -> Int -> [[a]] -> [[a]]
dropAtMat i j mat = map (dropAt j) $ dropAt i mat
postSplitAt (x, y) = x ++ tail y
dropAt :: Int -> [a] -> [a]
dropAt i = postSplitAt . splitAt i
dropAtMat' :: Int -> [[a]] -> [[a]]
dropAtMat' n mat | n /= (length mat 1) = dropAt n mat
| otherwise = take n mat
bpMat :: Int -> [[a]] -> [[a]]
bpMat _ [] = []
bpMat n m | n == 1 = (map (take sl) . take sl) m
| n == 2 = (map (drop sl) . take sl) m
| n == 3 = (map (take sl) . drop sl) m
| n == 4 = (map (drop sl) . drop sl) m
| otherwise = error "Please input 1 ~ 4"
where
l = length m
sl = (floor . sqrt . fromIntegral) l
(%-+-%) :: Num a => [[a]] -> [[a]] -> [[a]]
m %-+-% [] = m
[] %-+-% m = m
[[]] %-+-% m = m
m %-+-% [[]] = m
m %-+-% n = zipWith (zipWith (+)) m n
negMap :: Num a => [[a]] -> [[a]]
negMap = map (map negate)
(%---%) :: Num a => [[a]] -> [[a]] -> [[a]]
m %---% [] = m
[] %---% m = map (map negate) m
[[]] %---% m = map (map negate) m
m %---% [[]] = m
m %---% n = zipWith (zipWith ()) m n
(%-*-%) :: Num a => [[a]] -> [[a]] -> [[a]]
_ %-*-% [] = []
[] %-*-% _ = []
_ %-*-% [[]] = [[]]
[[] ] %-*-% _ = [[]]
[[x]] %-*-% [[y]] = [[x * y]]
m %-*-% n = zipWith (++) a11 a12 ++ zipWith (++) a21 a22
where
(m11, n11) = (bpMat 1 m, bpMat 1 n)
(m12, n12) = (bpMat 2 m, bpMat 2 n)
(m21, n21) = (bpMat 3 m, bpMat 3 n)
(m22, n22) = (bpMat 4 m, bpMat 4 n)
a11 = (m11 %-*-% n11) %-+-% (m12 %-*-% n21)
a12 = (m11 %-*-% n12) %-+-% (m12 %-*-% n22)
a21 = (m21 %-*-% n11) %-+-% (m22 %-*-% n21)
a22 = (m21 %-*-% n12) %-+-% (m22 %-*-% n22)
zerosVec :: Int -> [Int]
zerosVec n = take n [0, 0 ..]
eyeMat :: Int -> [[Int]]
eyeMat n = [ basisVec x n | x <- [0 .. (n 1)] ]
basisVec :: Int -> Int -> [Int]
basisVec n m = zerosVec n ++ [1] ++ zerosVec (m n 1)
permMat :: Int -> Int -> [[a]] -> [[Int]]
permMat i j m
| i < j
= take i idx
++ [idx !! j]
++ take (j i 1) (drop (i + 1) idx)
++ [idx !! i]
++ drop (j + 1) idx
| otherwise
= permMat j i m
where idx = eyeMat (length m)
whichMax :: Ord a => [a] -> Int
whichMax v = whichMax' v 0 m
where
m = maximum v
whichMax' :: Ord a => [a] -> Int -> a -> Int
whichMax' (x : xs) n m' = if x == m' then n else whichMax' xs (n + 1) m'
colMat :: [[a]] -> Int -> [a]
colMat m n = map (!! n) m
colMaxIdx :: Ord a => [[a]] -> Int -> Int
colMaxIdx m n = whichMax $ colMat m n
cycleMat :: [[a]] -> [[a]]
cycleMat (m : ms) = ms ++ [m]
bpMat' :: Int -> [[a]] -> [[a]]
bpMat' _ [] = []
bpMat' _ [x] = [x]
bpMat' n m | n == 1 = (map (take l) . take l) m
| n == 2 = (map (drop 1) . take l) m
| n == 3 = (map (take l) . drop 1) m
| n == 4 = (map (drop 1) . drop 1) m
| n == 0 = (map (drop 1 . take l) . drop 1 . take l) m
where l = length m 1
detMat :: (Eq a, Fractional a) => [[a]] -> a
detMat [[x]] = x
detMat m
| l == 2 = detMat m11 * detMat m22 detMat m12 * detMat m21
| d00 == 0 = (1) ^ (l 1) * detMat (cycleMat m)
| otherwise = (detMat m11 * detMat m22 detMat m12 * detMat m21) / detMat m00
where
l = length m
m11 = bpMat' 1 m
m12 = bpMat' 2 m
m21 = bpMat' 3 m
m22 = bpMat' 4 m
m00 = bpMat' 0 m
d00 = detMat m00
invMat :: (Eq a, Fractional a) => [[a]] -> [[a]]
invMat [] = []
invMat [[] ] = [[]]
invMat [[x]] = [[1 / x]]
invMat m
| length m == 2
= map (map (/ detMat m))
$ zipWith (++) m22 (negMap m12)
++ zipWith (++) (negMap m21) m11
| otherwise
= zipWith (++) a11 a12 ++ zipWith (++) a21 a22
where
m11 = bpMat 1 m
m12 = bpMat 2 m
m21 = bpMat 3 m
m22 = bpMat 4 m
a00 = invMat m11
s = m22 %---% (m21 %-*-% a00 %-*-% m12)
s00 = invMat s
a11 = a00 %-+-% (a00 %-*-% m12 %-*-% s00 %-*-% m21 %-*-% a00)
a12 = negMap a00 %-*-% m12 %-*-% s00
a21 = negMap s00 %-*-% m21 %-*-% a00
a22 = s00