FiniteCategories-0.1.0.0: Finite categories and usual categorical constructions on them.
CopyrightGuillaume Sabbagh 2021
LicenseGPL-3
Maintainerguillaumesabbagh@protonmail.com
Stabilityexperimental
Portabilityportable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Adjunction.Adjunction

Description

Adjunctions are all over the place in mathematics.

Synopsis

Documentation

leftAdjoint :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq m1, Eq o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq m2, Eq o2) => Diagram c1 m1 o1 c2 m2 o2 -> Diagram c2 m2 o2 c1 m1 o1 Source #

Returns the left adjoint of a functor, if the left adjoint does not exist, returns a partial Diagram being the best ajoint we could construct.

rightAdjoint :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq m1, Eq o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq m2, Eq o2) => Diagram c2 m2 o2 c1 m1 o1 -> Diagram c1 m1 o1 c2 m2 o2 Source #

Returns the right adjoint of a functor, if the right adjoint does not exist, returns a partial Diagram being the best ajoint we could construct.