module Types.Solver (solver) where import Control.Arrow (second) import Control.Monad (liftM) import Data.Either (lefts,rights) import Data.List (foldl') import Data.Maybe (isJust) import qualified Data.Set as Set import qualified Data.Map as Map import Guid import Types.Types import Types.Constrain import Types.Substitutions eq ctx t1 t2 = Context ctx (t1 :=: t2) isSolved ss (Context _ (t1 :=: t2)) = t1 == t2 isSolved ss (Context _ (x :<<: _)) = isJust (lookup x ss) isSolved ss c = False crush (Forall xs cs t) = do subs <- solver cs Map.empty return $ do ss' <- subs let ss = Map.toList ss' cs' = filter (not . isSolved ss) (subst ss cs) return $ Forall xs cs' (subst ss t) schemeSubHelp ctx x s t1 rltn t2 = do (t1',cs1) <- sub t1 (t2',cs2) <- sub t2 return (Context ctx (rltn t1' t2') : cs1 ++ cs2) where sub t | not (occurs x t) = return (t, []) | otherwise = do (st, cs) <- concretize s return (subst [(x,st)] t, cs) schemeSub x s c = do s' <- crush s case s' of Right s'' -> Right `liftM` schemeSub' x s'' c Left err -> return $ Left err schemeSub' x s (Context ctx (t1 :=: t2)) = schemeSubHelp ctx x s t1 (:=:) t2 schemeSub' x s (Context ctx (t1 :<: t2)) = schemeSubHelp ctx x s t1 (:<:) t2 schemeSub' x s c@(Context ctx (y :<<: Forall cxs ccs ctipe)) | not (occurs x c) = return [c] | otherwise = do Forall xs cs tipe <- rescheme s let ss = [(x,tipe)] constraints = subst ss (cs ++ ccs) c' = y :<<: Forall (cxs ++ xs) constraints (subst ss ctipe) return [ Context ctx c' ] solver :: [Context String Constraint] -> Map.Map X Type -> GuidCounter (Either String (Map.Map X Type)) solver [] subs = return $ Right subs -------- Destruct Type-constructors -------- solver ((Context ctx (t1@(ADT n1 ts1) :=: t2@(ADT n2 ts2))) : cs) subs = if n1 /= n2 then uniError ctx t1 t2 else solver (zipWith (eq ctx) ts1 ts2 ++ cs) subs solver ((Context ctx (LambdaT t1 t2 :=: LambdaT t1' t2')) : cs) subs = solver ([ eq ctx t1 t1', eq ctx t2 t2' ] ++ cs) subs -------- Type-equality -------- solver (Context ctx (VarT x :=: VarT y) : cs) subs | x == y = solver cs subs | otherwise = case (Map.lookup x subs, Map.lookup y subs) of (Just (Super xts), Just (Super yts)) -> let ts = Set.intersection xts yts setXY t = Map.insert x t . Map.insert y t in case Set.toList ts of [] -> unionError ctx xts yts [t] -> let cs1 = subst [(x,t),(y,t)] cs in cs1 `seq` solver cs1 (setXY t subs) _ -> solver cs $ setXY (Super ts) subs (Just (Super xts), _) -> let cs2 = subst [(y,VarT x)] cs in solver cs2 $ Map.insert y (VarT x) subs (_, _) -> let cs3 = subst [(x,VarT y)] cs in solver cs3 $ Map.insert x (VarT y) subs solver (Context ctx (VarT x :=: t) : cs) subs = do if x `occurs` t then occursError ctx (VarT x) t else (case Map.lookup x subs of Nothing -> let cs4 = subst [(x,t)] cs in solver cs4 . Map.map (subst [(x,t)]) $ Map.insert x t subs Just (Super ts) -> let ts' = Set.intersection ts (Set.singleton t) in case Set.toList ts' of [] -> solver (Context ctx (t :<: Super ts) : cs) subs [t'] -> let cs5 = subst [(x,t)] cs in solver cs5 $ Map.insert x t' subs _ -> solver cs $ Map.insert x (Super ts') subs Just t' -> solver (Context ctx (t' :=: t) : cs) subs ) solver ((Context ctx (t :=: VarT x)) : cs) subs = solver ((Context ctx (VarT x :=: t)) : cs) subs solver ((Context ctx (t1 :=: t2)) : cs) subs | t1 == t2 = solver cs subs | otherwise = uniError ctx t1 t2 -------- subtypes -------- solver (Context ctx (VarT x :<: Super ts) : cs) subs = case Map.lookup x subs of Nothing -> solver cs $ Map.insert x (Super ts) subs Just (Super ts') -> case Set.toList $ Set.intersection ts ts' of [] -> unionError ctx ts ts' [t] -> solver (subst [(x,t)] cs) $ Map.insert x t subs ts'' -> solver cs $ Map.insert x (Super $ Set.fromList ts'') subs solver (Context ctx (ADT "List" [t] :<: Super ts) : cs) subs | any f (Set.toList ts) = solver cs subs | otherwise = subtypeError ctx (ADT "List" [t]) (Super ts) where f (ADT "List" [VarT _]) = True f (ADT "List" [t']) = t == t' f _ = False solver (Context ctx (t :<: Super ts) : cs) subs | Set.member t ts = solver cs subs | otherwise = subtypeError ctx t (Super ts) solver (Context ctx (x :<<: s) : cs) subs | any (occurs x) cs = do css <- mapM (schemeSub x s) cs case lefts css of err : _ -> return $ Left err [] -> solver (concat (rights css)) subs | otherwise = do (t,cs7) <- concretize s let cs'' = (cs ++ Context ctx (VarT x :=: t) : map (extendCtx ctx) cs7) solver cs'' subs occursError ctx t1 t2 = return . Left $ "Type error: Occurs check: cannot construct the infinite type: " ++ show t1 ++ " = " ++ show t2 ++ " in context " ++ ctx uniError ctx t1 t2 = return . Left $ "Type error: " ++ show t1 ++ " is not equal to " ++ show t2 ++ " in context " ++ ctx unionError ctx ts ts' = return . Left $ concat [ "Type error: There are no types in both " , show (Super ts), " and ", show (Super ts') , " in context ", ctx ] subtypeError ctx t s = return . Left $ concat [ "Type error: ", show t, " is not a ", show s , " in context ", ctx ]