module Data.Edison.Coll.SkewHeap (
Heap,
empty,singleton,fromSeq,insert,insertSeq,union,unionSeq,delete,deleteAll,
deleteSeq,null,size,member,count,strict,structuralInvariant,
toSeq, lookup, lookupM, lookupAll, lookupWithDefault, fold, fold',
fold1, fold1', filter, partition, strictWith,
deleteMin,deleteMax,unsafeInsertMin,unsafeInsertMax,unsafeFromOrdSeq,
unsafeAppend,filterLT,filterLE,filterGT,filterGE,partitionLT_GE,
partitionLE_GT,partitionLT_GT,
minView,minElem,maxView,maxElem,foldr,foldr',foldl,foldl',
foldr1,foldr1',foldl1,foldl1',toOrdSeq,
unsafeMapMonotonic,
moduleName
) where
import Prelude hiding (null,foldr,foldl,foldr1,foldl1,lookup,filter)
import qualified Data.Edison.Coll as C
import qualified Data.Edison.Seq as S
import Data.Edison.Coll.Defaults
import Data.Monoid
import Control.Monad
import Test.QuickCheck
moduleName :: String
moduleName = "Data.Edison.Coll.SkewHeap"
data Heap a = E | T a (Heap a) (Heap a)
structuralInvariant :: Ord a => Heap a -> Bool
structuralInvariant E = True
structuralInvariant t@(T x _ _) = isMin x t
where isMin _ E = True
isMin x (T y l r) = x <= y && isMin y l && isMin y r
empty :: Ord a => Heap a
empty = E
singleton :: Ord a => a -> Heap a
singleton x = T x E E
insert :: Ord a => a -> Heap a -> Heap a
insert x E = T x E E
insert x h@(T y a b)
| x <= y = T x h E
| otherwise = T y (insert x b) a
union :: Ord a => Heap a -> Heap a -> Heap a
union E h = h
union h@(T x a b) h' = union' h x a b h'
where union' h _ _ _ E = h
union' hx x a b hy@(T y c d)
| x <= y = T x (union' hy y c d b) a
| otherwise = T y (union' hx x a b d) c
delete :: Ord a => a -> Heap a -> Heap a
delete x h = case del h of
Just h' -> h'
Nothing -> h
where del (T y a b) =
case compare x y of
LT -> Nothing
EQ -> Just (union a b)
GT -> case del b of
Just b' -> Just (T y a b')
Nothing -> case del a of
Just a' -> Just (T y a' b)
Nothing -> Nothing
del E = Nothing
deleteAll :: Ord a => a -> Heap a -> Heap a
deleteAll x h@(T y a b) =
case compare x y of
LT -> h
EQ -> union (deleteAll x a) (deleteAll x b)
GT -> T y (deleteAll x a) (deleteAll x b)
deleteAll _ E = E
null :: Ord a => Heap a -> Bool
null E = True
null _ = False
size :: Ord a => Heap a -> Int
size h = sz h 0
where sz E i = i
sz (T _ a b) i = sz a (sz b (i + 1))
member :: Ord a => a -> Heap a -> Bool
member _ E = False
member x (T y a b) =
case compare x y of
LT -> False
EQ -> True
GT -> member x b || member x a
count :: Ord a => a -> Heap a -> Int
count _ E = 0
count x (T y a b) =
case compare x y of
LT -> 0
EQ -> 1 + count x b + count x a
GT -> count x b + count x a
toSeq :: (Ord a,S.Sequence seq) => Heap a -> seq a
toSeq h = tol h S.empty
where tol E rest = rest
tol (T x a b) rest = S.lcons x (tol b (tol a rest))
lookupM :: (Ord a, Monad m) => a -> Heap a -> m a
lookupM _ E = fail "SkewHeap.lookupM: XXX"
lookupM x (T y a b) =
case compare x y of
LT -> fail "SkewHeap.lookupM: XXX"
EQ -> return y
GT -> case lookupM x b `mplus` lookupM x a of
Nothing -> fail "SkewHeap.lookupM: XXX"
Just x -> return x
lookupAll :: (Ord a,S.Sequence seq) => a -> Heap a -> seq a
lookupAll x h = look h S.empty
where look E ys = ys
look (T y a b) ys =
case compare x y of
LT -> ys
EQ -> S.lcons y (look b (look a ys))
GT -> look b (look a ys)
fold :: Ord a => (a -> b -> b) -> b -> Heap a -> b
fold _ e E = e
fold f e (T x a b) = f x (fold f (fold f e a) b)
fold' :: Ord a => (a -> b -> b) -> b -> Heap a -> b
fold' _ e E = e
fold' f e (T x a b) = e `seq` f x $! (fold' f (fold' f e a) b)
fold1 :: Ord a => (a -> a -> a) -> Heap a -> a
fold1 _ E = error "SkewHeap.fold1: empty collection"
fold1 f (T x a b) = fold f (fold f x a) b
fold1' :: Ord a => (a -> a -> a) -> Heap a -> a
fold1' _ E = error "SkewHeap.fold1': empty collection"
fold1' f (T x a b) = fold' f (fold' f x a) b
filter :: Ord a => (a -> Bool) -> Heap a -> Heap a
filter _ E = E
filter p (T x a b)
| p x = T x (filter p a) (filter p b)
| otherwise = union (filter p a) (filter p b)
partition :: Ord a => (a -> Bool) -> Heap a -> (Heap a, Heap a)
partition _ E = (E, E)
partition p (T x a b)
| p x = (T x a' b', union a'' b'')
| otherwise = (union a' b', T x a'' b'')
where (a', a'') = partition p a
(b', b'') = partition p b
deleteMin :: Ord a => Heap a -> Heap a
deleteMin E = E
deleteMin (T _ a b) = union a b
deleteMax :: Ord a => Heap a -> Heap a
deleteMax h = case maxView h of
Nothing -> E
Just (_,h') -> h'
unsafeInsertMin :: Ord a => a -> Heap a -> Heap a
unsafeInsertMin x h = T x h E
unsafeAppend :: Ord a => Heap a -> Heap a -> Heap a
unsafeAppend E h = h
unsafeAppend (T x a b) h = T x (unsafeAppend b h) a
filterLT :: Ord a => a -> Heap a -> Heap a
filterLT y (T x a b) | x < y = T x (filterLT y a) (filterLT y b)
filterLT _ _ = E
filterLE :: Ord a => a -> Heap a -> Heap a
filterLE y (T x a b) | x <= y = T x (filterLE y a) (filterLE y b)
filterLE _ _ = E
filterGT :: Ord a => a -> Heap a -> Heap a
filterGT y h = C.unionList (collect h [])
where collect E hs = hs
collect h@(T x a b) hs
| x > y = h : hs
| otherwise = collect a (collect b hs)
filterGE :: Ord a => a -> Heap a -> Heap a
filterGE y h = C.unionList (collect h [])
where collect E hs = hs
collect h@(T x a b) hs
| x >= y = h : hs
| otherwise = collect b (collect a hs)
partitionLT_GE :: Ord a => a -> Heap a -> (Heap a, Heap a)
partitionLT_GE y h = (h', C.unionList hs)
where (h', hs) = collect h []
collect E hs = (E, hs)
collect h@(T x a b) hs
| x >= y = (E, h:hs)
| otherwise = let (a', hs') = collect a hs
(b', hs'') = collect b hs'
in (T x a' b', hs'')
partitionLE_GT :: Ord a => a -> Heap a -> (Heap a, Heap a)
partitionLE_GT y h = (h', C.unionList hs)
where (h', hs) = collect h []
collect E hs = (E, hs)
collect h@(T x a b) hs
| x > y = (E, h:hs)
| otherwise = let (a', hs') = collect a hs
(b', hs'') = collect b hs'
in (T x a' b', hs'')
partitionLT_GT :: Ord a => a -> Heap a -> (Heap a, Heap a)
partitionLT_GT y h = (h', C.unionList hs)
where (h', hs) = collect h []
collect E hs = (E, hs)
collect h@(T x a b) hs =
case compare x y of
GT -> (E, h:hs)
EQ -> let (a', hs') = collect a hs
(b', hs'') = collect b hs'
in (union a' b', hs'')
LT -> let (a', hs') = collect a hs
(b', hs'') = collect b hs'
in (T x a' b', hs'')
minView :: (Ord a, Monad m) => Heap a -> m (a, Heap a)
minView E = fail "SkewHeap.minView: empty heap"
minView (T x a b) = return (x, union a b)
minElem :: Ord a => Heap a -> a
minElem E = error "SkewHeap.minElem: empty collection"
minElem (T x _ _) = x
maxView :: (Ord a, Monad m) => Heap a -> m (a, Heap a)
maxView E = fail "SkewHeap.maxView: empty heap"
maxView (T x E E) = return (x, E)
maxView (T x a E) = return (y, T x a' E)
where Just (y, a') = maxView a
maxView (T x E a) = return (y, T x a' E)
where Just (y, a') = maxView a
maxView (T x a b)
| y >= z = return (y, T x a' b)
| otherwise = return (z, T x a b')
where Just (y, a') = maxView a
Just (z, b') = maxView b
maxElem :: Ord a => Heap a -> a
maxElem E = error "SkewHeap.maxElem: empty collection"
maxElem (T x E E) = x
maxElem (T _ a E) = maxElem a
maxElem (T _ E a) = maxElem a
maxElem (T _ a b) = findMax b (findLeaf a)
where findMax E m = m
findMax (T x E E) m
| m >= x = m
| otherwise = x
findMax (T _ a E) m = findMax a m
findMax (T _ E a) m = findMax a m
findMax (T _ a b) m = findMax a (findMax b m)
findLeaf E = error "SkewHeap.maxElem: bug"
findLeaf (T x E E) = x
findLeaf (T _ a E) = findLeaf a
findLeaf (T _ E a) = findLeaf a
findLeaf (T _ a b) = findMax b (findLeaf a)
foldr :: Ord a => (a -> b -> b) -> b -> Heap a -> b
foldr _ e E = e
foldr f e (T x a b) = f x (foldr f e (union a b))
foldr' :: Ord a => (a -> b -> b) -> b -> Heap a -> b
foldr' _ e E = e
foldr' f e (T x a b) = e `seq` f x $! (foldr' f e (union a b))
foldl :: Ord a => (b -> a -> b) -> b -> Heap a -> b
foldl _ e E = e
foldl f e (T x a b) = foldl f (f e x) (union a b)
foldl' :: Ord a => (b -> a -> b) -> b -> Heap a -> b
foldl' _ e E = e
foldl' f e (T x a b) = e `seq` foldl' f (f e x) (union a b)
foldr1 :: Ord a => (a -> a -> a) -> Heap a -> a
foldr1 _ E = error "SkewHeap.foldr1: empty collection"
foldr1 _ (T x E E) = x
foldr1 f (T x a b) = f x (foldr1 f (union a b))
foldr1' :: Ord a => (a -> a -> a) -> Heap a -> a
foldr1' _ E = error "SkewHeap.foldr1': empty collection"
foldr1' _ (T x E E) = x
foldr1' f (T x a b) = f x $! (foldr1' f (union a b))
foldl1 :: Ord a => (a -> a -> a) -> Heap a -> a
foldl1 _ E = error "SkewHeap.foldl1: empty collection"
foldl1 f (T x a b) = foldl f x (union a b)
foldl1' :: Ord a => (a -> a -> a) -> Heap a -> a
foldl1' _ E = error "SkewHeap.foldl1': empty collection"
foldl1' f (T x a b) = foldl' f x (union a b)
unsafeMapMonotonic :: Ord a => (a -> a) -> Heap a -> Heap a
unsafeMapMonotonic _ E = E
unsafeMapMonotonic f (T x a b) =
T (f x) (unsafeMapMonotonic f a) (unsafeMapMonotonic f b)
strict :: Heap a -> Heap a
strict h@E = h
strict h@(T _ l r) = strict l `seq` strict r `seq` h
strictWith :: (a -> b) -> Heap a -> Heap a
strictWith _ h@E = h
strictWith f h@(T x l r) = f x `seq` strictWith f l `seq` strictWith f r `seq` h
fromSeq :: (Ord a,S.Sequence seq) => seq a -> Heap a
fromSeq = fromSeqUsingUnionSeq
insertSeq :: (Ord a,S.Sequence seq) => seq a -> Heap a -> Heap a
insertSeq = insertSeqUsingUnion
unionSeq :: (Ord a,S.Sequence seq) => seq (Heap a) -> Heap a
unionSeq = unionSeqUsingReduce
deleteSeq :: (Ord a,S.Sequence seq) => seq a -> Heap a -> Heap a
deleteSeq = deleteSeqUsingDelete
lookup :: Ord a => a -> Heap a -> a
lookup = lookupUsingLookupM
lookupWithDefault :: Ord a => a -> a -> Heap a -> a
lookupWithDefault = lookupWithDefaultUsingLookupM
unsafeInsertMax :: Ord a => a -> Heap a -> Heap a
unsafeInsertMax = unsafeInsertMaxUsingUnsafeAppend
unsafeFromOrdSeq :: (Ord a,S.Sequence seq) => seq a -> Heap a
unsafeFromOrdSeq = unsafeFromOrdSeqUsingUnsafeInsertMin
toOrdSeq :: (Ord a,S.Sequence seq) => Heap a -> seq a
toOrdSeq = toOrdSeqUsingFoldr
instance Ord a => C.CollX (Heap a) a where
{singleton = singleton; fromSeq = fromSeq; insert = insert;
insertSeq = insertSeq; unionSeq = unionSeq;
delete = delete; deleteAll = deleteAll; deleteSeq = deleteSeq;
null = null; size = size; member = member; count = count;
strict = strict;
structuralInvariant = structuralInvariant; instanceName _ = moduleName}
instance Ord a => C.OrdCollX (Heap a) a where
{deleteMin = deleteMin; deleteMax = deleteMax;
unsafeInsertMin = unsafeInsertMin; unsafeInsertMax = unsafeInsertMax;
unsafeFromOrdSeq = unsafeFromOrdSeq; unsafeAppend = unsafeAppend;
filterLT = filterLT; filterLE = filterLE; filterGT = filterGT;
filterGE = filterGE; partitionLT_GE = partitionLT_GE;
partitionLE_GT = partitionLE_GT; partitionLT_GT = partitionLT_GT}
instance Ord a => C.Coll (Heap a) a where
{toSeq = toSeq; lookup = lookup; lookupM = lookupM;
lookupAll = lookupAll; lookupWithDefault = lookupWithDefault;
fold = fold; fold' = fold'; fold1 = fold1; fold1' = fold1';
filter = filter; partition = partition; strictWith = strictWith}
instance Ord a => C.OrdColl (Heap a) a where
{minView = minView; minElem = minElem; maxView = maxView;
maxElem = maxElem; foldr = foldr; foldr' = foldr';
foldl = foldl; foldl' = foldl'; foldr1 = foldr1; foldr1' = foldr1';
foldl1 = foldl1; foldl1' = fold1'; toOrdSeq = toOrdSeq;
unsafeMapMonotonic = unsafeMapMonotonic}
instance Ord a => Eq (Heap a) where
xs == ys = C.toOrdList xs == C.toOrdList ys
instance (Ord a, Show a) => Show (Heap a) where
showsPrec = showsPrecUsingToList
instance (Ord a, Read a) => Read (Heap a) where
readsPrec = readsPrecUsingFromList
instance (Ord a, Arbitrary a) => Arbitrary (Heap a) where
arbitrary = sized (\n -> arbTree n)
where arbTree 0 = return E
arbTree n =
frequency [(1, return E),
(4, liftM3 sift arbitrary (arbTree (n `div` 2))
(arbTree (n `div` 4)))]
sift x (T y a b) E
| y < x = T y (sift x a b) E
sift x E (T y a b)
| y < x = T y E (sift x a b)
sift x s@(T y a b) t@(T z c d)
| y < x && y <= z = T y (sift x a b) t
| z < x = T z s (sift x c d)
sift x a b = T x a b
instance (Ord a, CoArbitrary a) => CoArbitrary (Heap a) where
coarbitrary E = variant 0
coarbitrary (T x a b) =
variant 1 . coarbitrary x . coarbitrary a . coarbitrary b
instance (Ord a) => Monoid (Heap a) where
mempty = empty
mappend = union
mconcat = unionSeq
instance (Ord a) => Ord (Heap a) where
compare = compareUsingToOrdList