module DDF.Lang (
module DDF.Lang,
module DDF.Bool,
module DDF.Char,
module DDF.Double,
module DDF.Float,
module DDF.Bimap,
module DDF.Dual,
module DDF.Meta.Diff,
module DDF.Unit,
module DDF.Sum,
module DDF.Int,
module DDF.IO,
module DDF.DiffWrapper,
module DDF.Fix,
module DDF.FreeVector
) where
import DDF.Bool
import DDF.Char
import DDF.Double
import DDF.Float
import DDF.Bimap
import DDF.Dual
import DDF.Vector
import DDF.Meta.Diff
import DDF.Unit
import DDF.Sum
import DDF.Int
import DDF.IO
import DDF.DiffWrapper
import DDF.Fix
import DDF.FreeVector
import qualified DDF.VectorTF as VTF
import qualified DDF.Meta.VectorTF as M.VTF
import qualified DDF.Meta.Dual as M
import qualified Control.Monad.Writer as M (Writer)
import qualified GHC.Float as M
import qualified Prelude as M
import qualified Data.Map as M
import qualified DDF.Map as Map
import qualified Data.Map as M.Map
import qualified Data.Functor.Foldable as M
import qualified Data.Bimap as M.Bimap
import qualified DDF.Meta.FreeVector as M
type FreeVectorBuilder b = M.Map.Map b M.Double
type SVTFBuilder b = State (M.Bimap.Bimap (M.VTF.VectorTF b M.Int) M.Int) M.Int
class (Bool r, Char r, Double r, Float r, Bimap r, Dual r, Unit r, Sum r, Int r, IO r, VTF.VectorTF r, DiffWrapper r, Fix r, FreeVector r) => Lang r where
exfalso :: r h (Void -> a)
writer :: r h ((a, w) -> M.Writer w a)
runWriter :: r h (M.Writer w a -> (a, w))
float2Double :: r h (M.Float -> M.Double)
double2Float :: r h (M.Double -> M.Float)
state :: r h ((x -> (y, x)) -> State x y)
runState :: r h (State x y -> (x -> (y, x)))
iterate :: r h ((x -> x) -> x -> [x])
iterate = lam $ \f -> y1 $ lam2 $ \fi x -> cons2 x (app fi (app f x))
buildFreeVector :: Map.Ord b => r h (FreeVectorBuilder b -> M.FreeVector b M.Double)
buildFreeVector = lam $ \fb -> freeVector1 $ lam $ \b -> optionMatch3 (double 0) id (Map.lookup2 fb b)
toSVTFBuilder :: Map.Ord b => r h (M.VTF.VectorTF b M.Int -> SVTFBuilder b)
toSVTFBuilder = lam $ \x -> state1 $ lam $ \m ->
optionMatch3
(let_2 (size1 m) (lam $ \si -> mkProd2 si (insert2 (mkProd2 x si) m)))
(lam $ \xid -> mkProd2 xid m)
(lookupL2 m x)
get :: r h (Maybe a -> a)
get = optionMatch2 undefined id
getVar :: r h (State x x)
getVar = state1 (dup1 mkProd)
update :: r h ((x -> x) -> State x ())
update = lam $ \f -> state1 $ lam $ \x -> mkProd2 unit (app f x)
updateWengert :: r h (M.Int -> M.Double -> M.Map.Map M.Int M.Double -> M.Map M.Int M.Double)
updateWengert = lam2 $ \i d -> Map.alter2 (optionMatch2 (just1 d) (just `com2` (plus1 d))) i
vtfCata :: r h ((M.VTF.VectorTF a b -> b) -> M.Fix (M.VTF.VectorTF a) -> b)
vtfCata = lam $ \f -> y1 $ lam $ \fx ->
VTF.vtfMatch4
(app f VTF.zero)
(f `com2` VTF.basis)
(lam2 $ \l r -> app f (VTF.plus2 (app fx l) (app fx r)))
(lam2 $ \d v -> app f (VTF.mult2 d (app fx v))) `com2` runFix
class Reify r x where
reify :: x -> r h x
instance Lang r => Reify r () where
reify _ = unit
instance Lang r => Reify r M.Double where
reify = double
instance (Lang repr, Reify repr l, Reify repr r) => Reify repr (l, r) where
reify (l, r) = mkProd2 (reify l) (reify r)
instance Lang r => Monoid r () where
zero = unit
plus = const1 $ const1 unit
instance Lang r => Group r () where
invert = const1 unit
minus = const1 $ const1 unit
instance Lang r => Vector r () where
type Basis () = Void
toFreeVector = const1 $ freeVector1 exfalso
mult = const1 $ const1 unit
divide = const1 $ const1 unit
instance Float r => Monoid r M.Float where
zero = floatZero
plus = floatPlus
instance Float r => Group r M.Float where
minus = floatMinus
instance Lang r => Vector r M.Float where
type Basis M.Float = ()
toFreeVector = freeVector `com2` const `com2` float2Double
mult = com2 floatMult double2Float
divide = com2 (flip2 com double2Float) floatDivide
instance Lang r => Functor r (M.VTF.VectorTF b) where
map = lam $ \f -> VTF.vtfMatch4 VTF.zero VTF.basis (lam2 $ \l r -> app f l `VTF.plus2` app f r) (lam2 $ \d x -> d `VTF.mult2` app f x)
instance (Prod repr, Monoid repr l, Monoid repr r) => Monoid repr (l, r) where
zero = mkProd2 zero zero
plus = lam2 $ \l r -> mkProd2 (plus2 (zro1 l) (zro1 r)) (plus2 (fst1 l) (fst1 r))
instance (Prod repr, Group repr l, Group repr r) => Group repr (l, r) where
invert = bimap2 invert invert
instance (Prod repr, Double repr, Sum repr, FreeVector repr, Vector repr l, Vector repr r) => Vector repr (l, r) where
type Basis (l, r) = M.Either (Basis l) (Basis r)
toFreeVector = lam $ \p -> let_2 (toFreeVector1 $ zro1 p) $ lam $ \lfv -> let_2 (toFreeVector1 $ fst1 p) $ lam $ \rfv ->
freeVector1 $ sumMatch2 (runFreeVector1 lfv) (runFreeVector1 rfv)
mult = lam $ \x -> bimap2 (mult1 x) (mult1 x)
instance (Double r, Monoid r v) => Monoid r (M.Double -> v) where
zero = const1 zero
plus = lam3 $ \l r x -> plus2 (app l x) (app r x)
instance (Lang r, Group r v) => Group r (M.Double -> v) where
invert = lam2 $ \l x -> app l (invert1 x)
instance (Lang r, Vector r v) => Vector r (M.Double -> v) where
type Basis (M.Double -> v) = Basis v
toFreeVector = lam $ \f -> toFreeVector1 $ app f (double 1)
mult = lam3 $ \l r x -> app r (mult2 l x)
instance Lang r => Monoid r [a] where
zero = nil
plus = listAppend
instance Lang r => Functor r [] where
map = lam $ \f -> y1 $ lam $ \self -> listMatch2 nil (lam2 $ \x xs -> cons2 (app f x) $ app self xs)
instance Lang r => BiFunctor r M.Either where
bimap = lam2 $ \l r -> sumMatch2 (com2 left l) (com2 right r)
instance Prod r => BiFunctor r (,) where
bimap = lam3 $ \l r p -> mkProd2 (app l (zro1 p)) (app r (fst1 p))
instance Dual r => BiFunctor r M.Dual where
bimap = lam2 $ \l r -> dual `com2` bimap2 l r `com2` runDual
instance Lang r => Functor r (Writer w) where
map = lam $ \f -> com2 writer (com2 (bimap2 f id) runWriter)
instance Lang r => Functor r (M.Map k) where
map = Map.mapMap
instance (Lang r, Monoid r w) => Applicative r (Writer w) where
pure = com2 writer (flip2 mkProd zero)
ap = lam2 $ \f x -> writer1 (mkProd2 (app (zro1 (runWriter1 f)) (zro1 (runWriter1 x))) (plus2 (fst1 (runWriter1 f)) (fst1 (runWriter1 x))))
instance (Lang r, Monoid r w) => Monad r (Writer w) where
join = lam $ \x -> writer1 $ mkProd2 (zro1 $ runWriter1 $ zro1 $ runWriter1 x) (plus2 (fst1 $ runWriter1 $ zro1 $ runWriter1 x) (fst1 $ runWriter1 x))
instance Lang r => Functor r (State l) where
map = lam2 $ \f st -> state1 (com2 (bimap2 f id) (runState1 st))
instance Lang r => Applicative r (State l) where
pure = lam $ \x -> state1 (mkProd1 x)
ap = lam2 $ \f x -> state1 $ lam $ \st -> let_2 (runState2 f st) (lam $ \p -> bimap3 (zro1 p) id (runState2 x (fst1 p)))
instance Lang r => Monad r (State l) where
join = lam $ \x -> state1 $ lam $ \st -> let_2 (runState2 x st) (uncurry1 runState)
instance Lang r => Functor r M.Maybe where
map = lam $ \func -> optionMatch2 nothing (com2 just func)
instance Lang r => Applicative r M.Maybe where
pure = just
ap = optionMatch2 (const1 nothing) map
instance Lang r => Monad r M.Maybe where
bind = lam2 $ \x func -> optionMatch3 nothing func x
instance Lang r => Monoid r (M.FreeVector b M.Double) where
zero = freeVector1 $ const1 (double 0)
plus = lam2 $ \l r -> freeVector1 $ lam $ \x -> runFreeVector2 l x `plus2` runFreeVector2 r x
instance Lang r => Group r (M.FreeVector b M.Double) where
invert = lam $ \f -> freeVector1 $ lam $ \x -> invert1 (runFreeVector2 f x)
minus = lam2 $ \l r -> freeVector1 $ lam $ \x -> runFreeVector2 l x `minus2` runFreeVector2 r x
instance Lang r => Vector r (M.FreeVector b M.Double) where
type Basis (M.FreeVector b M.Double) = b
toFreeVector = id
mult = lam2 $ \d l -> freeVector1 $ lam $ \x -> d `mult2` runFreeVector2 l x
divide = lam2 $ \l d -> freeVector1 $ lam $ \x -> runFreeVector2 l x `divide2` d
instance (Map.Ord b, Lang r) => Monoid r (FreeVectorBuilder b) where
zero = Map.empty
plus = Map.unionWith1 plus
instance (Map.Ord b, Lang r) => Group r (FreeVectorBuilder b) where
invert = Map.mapMap1 invert
instance (Map.Ord b, Lang r) => Vector r (FreeVectorBuilder b) where
type Basis (FreeVectorBuilder b) = b
toFreeVector = buildFreeVector
mult = Map.mapMap `com2` mult
divide = lam2 $ \m d -> Map.mapMap2 (lam $ \x -> divide2 x d) m
instance Lang r => Monoid r (M.Fix (M.VTF.VectorTF b)) where
zero = fix1 VTF.zero
plus = lam2 $ \l r -> fix1 $ l `VTF.plus2` r
instance (Map.Ord b, Lang r) => Group r (M.Fix (M.VTF.VectorTF b)) where
invert = mult1 (double (1))
instance (Map.Ord b, Lang r) => Vector r (M.Fix (M.VTF.VectorTF b)) where
type Basis (M.Fix (M.VTF.VectorTF b)) = b
toFreeVector = buildFreeVector `com2` vtfCata1 (VTF.vtfMatch4 zero (flip2 Map.singleton (double 1)) plus mult)
mult = lam $ \d -> fix `com2` VTF.mult1 d
instance (Map.Ord b, Lang r) => Monoid r (SVTFBuilder b) where
zero = toSVTFBuilder1 VTF.zero
plus = lam2 $ \l r -> l `bind2` (lam $ \lid -> r `bind2` (lam $ \rid -> toSVTFBuilder1 (VTF.plus2 lid rid)))
instance (Map.Ord b, Lang r) => Group r (SVTFBuilder b) where
invert = mult1 (double (1))
instance (Map.Ord b, Lang r) => Vector r (SVTFBuilder b) where
type Basis (SVTFBuilder b) = b
toFreeVector =
buildFreeVector `com2` flip2 id Map.empty `com2`
(lam $ \x -> zro `com2` (runState1 $ y2 (lam2 $ \fx i ->
map2 (lam $ \m -> mkProd2 (get1 $ Map.lookup2 (fst1 x) i) (get1 $ Map.lookup2 m i)) getVar `bind2`
(lam $ \p -> VTF.vtfMatch5
(return1 zero)
(lam $ \b -> return1 (Map.singleton2 b (fst1 p)))
(lam2 $ \lid rid -> map2 (const1 zero) (update1 (updateWengert2 lid (fst1 p) `com2` updateWengert2 rid (fst1 p))))
(lam2 $ \d xid -> map2 (const1 zero) (update1 (let_2 (d `mult2` (fst1 p)) (updateWengert1 xid))))
(zro1 p) `bind2` (lam $ \fvb -> ite3 (return1 fvb) (map2 (plus1 fvb) $ app fx (pred1 i)) (isZero1 i)))) (zro1 x))
`com2` Map.insert2 (zro1 x) (double 0)) `com2` bimap2 id toMapR `com2` flip2 runState empty
mult = lam2 $ \d x -> x `bind2` (lam $ \xid -> toSVTFBuilder1 (VTF.mult2 d xid))
type instance DiffType v (M.VTF.VectorTF t f) = M.VTF.VectorTF (DiffType v t) (DiffType v f)
instance (Map.Ord b, Map.Ord f) => Map.Ord (M.VTF.VectorTF b f) where
diffOrd (_ :: Proxy (v, M.VTF.VectorTF b f)) = withDict (Map.diffOrd (Proxy :: Proxy (v, b))) $ withDict (Map.diffOrd (Proxy :: Proxy (v, f))) Dict
type instance DiffType v M.Int = M.Int
instance Map.Ord M.Int where
diffOrd _ = Dict
instance Double r => Monoid r M.Double where
zero = doubleZero
plus = doublePlus
instance Double r => Group r M.Double where
minus = doubleMinus
instance Lang r => Vector r M.Double where
type Basis M.Double = ()
toFreeVector = freeVector `com2` const
mult = doubleMult
divide = doubleDivide
uncurry1 = app uncurry
optionMatch2 = app2 optionMatch
optionMatch3 = app3 optionMatch
writer1 = app writer
runWriter1 = app runWriter
float2Double1 = app float2Double
floatExp1 = app floatExp
state1 = app state
runState1 = app runState
runState2 = app2 runState
toSVTFBuilder1 = app toSVTFBuilder
double2Float1 = app double2Float
get1 = app get
return1 = app return
update1 = app update
updateWengert1 = app updateWengert
updateWengert2 = app2 updateWengert
vtfCata1 = app vtfCata