module Data.Matrix.Class where
import Prelude ()
import Algebra.RingUtils
import Control.Applicative hiding ((<|>))
fingerprint m = [[ if isZero (at i j m) then ' ' else 'X' | i <- [0..x1] ] | j <- [0..y1]]
where x = countColumns m
y = countRows m
(f *** g) (x,y) = (f x,g y)
data Dimension
= XD
| YD
deriving (Eq,Show)
quad a b c d = (a <|> b) <-> (c <|> d)
nextDim XD = YD
nextDim YD = XD
type Extent = (Int,Int)
ext XD (x,y) = x
ext YD (x,y) = y
glueExt XD (x1,y1) (x2,y2) = (x1+x2,y1)
glueExt YD (x1,y1) (x2,y2) = (x1,y1+y2)
splitExt XD k (x,y) = ((k,y),(xk,y))
splitExt YD k (x,y) = ((x,k),(x,yk))
class Matrix m where
at :: AbelianGroupZ a => Int -> Int -> m a -> a
extent :: m a -> Extent
singleton :: AbelianGroupZ a => a -> m a
glue :: AbelianGroup a => Dimension -> m a -> m a -> m a
split :: AbelianGroupZ a => Dimension -> Int -> m a -> (m a, m a)
zeroMatrix :: AbelianGroup a => Int -> Int -> m a
instance Matrix m => Matrix (O Pair m) where
at i j (O (x :/: y)) = at i j x + at i j y
extent (O (x :/: y)) = extent x
glue d (O p) (O q) = O $ glue d <$> p <*> q
split d k (O (x :/: y)) = (O $ ax :/: ay, O $ bx :/: by)
where (ax,bx) = split d k x
(ay,by) = split d k y
zeroMatrix x y = O $ pure (zeroMatrix x y)
singleton x = O $ pure (singleton x)
(<|>) :: (AbelianGroup a, Matrix m) => m a -> m a -> m a
(<|>) = glue XD
(<->) :: (AbelianGroup a, Matrix m) => m a -> m a -> m a
(<->) = glue YD
countColumns, countRows :: Matrix m => m a -> Int
countColumns = ext XD . extent
countRows = ext YD . extent
chopLastColumn, chopFirstRow, chopFirstColumn, chopLastRow, lastColumn, firstRow :: (AbelianGroupZ a, Matrix m) => m a -> m a
chopFirstRow = snd . split YD 1
chopFirstColumn = snd . split XD 1
chopLastColumn x = fst . split XD (countColumns x 1) $ x
firstRow = fst . split YD 1
lastColumn x = snd . split XD (countColumns x 1) $ x
chopLastRow x = fst . split YD (countRows x 1) $ x