{-# LANGUAGE CPP #-} {-# OPTIONS_GHC -Wunused-imports #-} -- | Small sets represented as a bitmask for fast membership checking. -- -- With the exception of converting to/from lists, all operations are O(1). -- -- Mimics the interface of 'Data.Set'. -- -- Import as: -- @ -- import qualified Agda.Utils.SmallSet as SmallSet -- import Agda.Utils.SmallSet (SmallSet) -- @ module Agda.Utils.SmallSet ( SmallSet(..) , SmallSetElement , Ix , (\\) , complement , delete , difference , elems , empty , fromList, fromAscList, fromDistinctAscList , insert , intersection , member , notMember , null , singleton , toList, toAscList , total , union ) where import Prelude hiding (null) import Control.DeepSeq import Data.Word (Word64) #if !MIN_VERSION_base(4,20,0) import Data.List (foldl') #endif import Data.Bits hiding (complement) import qualified Data.Bits as Bits import Data.Ix import qualified Agda.Utils.Null as Null -- | An element in a small set. -- -- This must implement 'Bounded' and 'Ix', and contain at most 64 values. class (Bounded a, Ix a) => SmallSetElement a where newtype SmallSet a = SmallSet { theSmallSet :: Word64 } deriving (Eq, Ord, Show, NFData) instance SmallSetElement a => Null.Null (SmallSet a) where empty = empty null = null instance SmallSetElement a => Semigroup (SmallSet a) where (<>) = union instance SmallSetElement a => Monoid (SmallSet a) where mempty = empty -- * Query -- | Time O(1). null :: SmallSetElement a => SmallSet a -> Bool null s = theSmallSet s == 0 -- | Time O(1). member :: SmallSetElement a => a -> SmallSet a -> Bool member a s = theSmallSet s `testBit` idx a -- | @not . member a@. Time O(1). notMember :: SmallSetElement a => a -> SmallSet a -> Bool notMember a = not . member a -- * Construction -- | The empty set. Time O(1). empty :: SmallSetElement a => SmallSet a empty = SmallSet 0 -- | The full set. Time O(1). total :: forall a. SmallSetElement a => SmallSet a total = SmallSet $ Bits.complement 0 -- | A singleton set. Time O(1). singleton :: SmallSetElement a => a -> SmallSet a singleton a = SmallSet $ bit (idx a) -- | Time O(1). insert :: SmallSetElement a => a -> SmallSet a -> SmallSet a insert a s = SmallSet $ theSmallSet s `setBit` idx a -- | Time O(1). delete :: SmallSetElement a => a -> SmallSet a -> SmallSet a delete a s = SmallSet $ theSmallSet s `clearBit` idx a -- * Combine -- | Time O(n). complement :: SmallSetElement a => SmallSet a -> SmallSet a complement = SmallSet . Bits.complement . theSmallSet -- | Time O(1). difference, (\\) :: SmallSetElement a => SmallSet a -> SmallSet a -> SmallSet a difference s t = SmallSet $ theSmallSet s .&. Bits.complement (theSmallSet t) (\\) = difference -- | Time O(1). intersection :: SmallSetElement a => SmallSet a -> SmallSet a -> SmallSet a intersection s t = SmallSet $ theSmallSet s .&. theSmallSet t -- | Time O(n). union :: SmallSetElement a => SmallSet a -> SmallSet a -> SmallSet a union s t = SmallSet $ theSmallSet s .|. theSmallSet t -- * Conversion -- | Time O(n). elems, toList, toAscList :: SmallSetElement a => SmallSet a -> [a] elems s = filter (\i -> theSmallSet s `testBit` idx i) (range bounds) toList = elems toAscList = elems -- | Time O(n). fromList, fromAscList, fromDistinctAscList :: SmallSetElement a => [a] -> SmallSet a fromList = foldl' (flip insert) empty fromAscList = fromList fromDistinctAscList = fromList -- * Internals bounds :: SmallSetElement a => (a, a) bounds = (minBound, maxBound) idx :: SmallSetElement a => a -> Int idx a = index bounds a