{-# OPTIONS_GHC -fno-warn-orphans #-}
module Agda.TypeChecking.Serialise.Instances.Internal where
import Control.Monad.IO.Class
import Agda.Syntax.Internal as I
import Agda.Syntax.Position as P
import Agda.TypeChecking.Serialise.Base
import Agda.TypeChecking.Serialise.Instances.Compilers ()
import Agda.TypeChecking.Monad
import Agda.TypeChecking.CompiledClause
import Agda.TypeChecking.Positivity.Occurrence
import Agda.TypeChecking.Coverage.SplitTree
import Agda.Utils.Permutation
import Agda.Utils.Impossible
instance EmbPrj a => EmbPrj (Dom a) where
icod_ :: Dom a -> S Int32
icod_ (Dom ArgInfo
a Bool
b Maybe NamedName
c Maybe Term
d a
e) = (ArgInfo -> Bool -> Maybe NamedName -> Maybe Term -> a -> Dom a)
-> ArgInfo -> Bool -> Maybe NamedName -> Maybe Term -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' ArgInfo -> Bool -> Maybe NamedName -> Maybe Term -> a -> Dom a
forall t e.
ArgInfo -> Bool -> Maybe NamedName -> Maybe t -> e -> Dom' t e
Dom ArgInfo
a Bool
b Maybe NamedName
c Maybe Term
d a
e
value :: Int32 -> R (Dom a)
value = (ArgInfo -> Bool -> Maybe NamedName -> Maybe Term -> a -> Dom a)
-> Int32
-> R (CoDomain
(ArgInfo -> Bool -> Maybe NamedName -> Maybe Term -> a -> Dom a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN ArgInfo -> Bool -> Maybe NamedName -> Maybe Term -> a -> Dom a
forall t e.
ArgInfo -> Bool -> Maybe NamedName -> Maybe t -> e -> Dom' t e
Dom
instance EmbPrj Signature where
icod_ :: Signature -> S Int32
icod_ (Sig Sections
a Definitions
b RewriteRuleMap
c) = (Sections -> Definitions -> RewriteRuleMap -> Signature)
-> Sections -> Definitions -> RewriteRuleMap -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Sections -> Definitions -> RewriteRuleMap -> Signature
Sig Sections
a Definitions
b RewriteRuleMap
c
value :: Int32 -> R Signature
value = (Sections -> Definitions -> RewriteRuleMap -> Signature)
-> Int32
-> R (CoDomain
(Sections -> Definitions -> RewriteRuleMap -> Signature))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Sections -> Definitions -> RewriteRuleMap -> Signature
Sig
instance EmbPrj Section where
icod_ :: Section -> S Int32
icod_ (Section Telescope
a) = (Telescope -> Section) -> Telescope -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Telescope -> Section
Section Telescope
a
value :: Int32 -> R Section
value = (Telescope -> Section)
-> Int32 -> R (CoDomain (Telescope -> Section))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Telescope -> Section
Section
instance EmbPrj a => EmbPrj (Tele a) where
icod_ :: Tele a -> S Int32
icod_ Tele a
EmptyTel = Tele Any -> Arrows (Domains (Tele Any)) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Tele Any
forall a. Tele a
EmptyTel
icod_ (ExtendTel a
a Abs (Tele a)
b) = (a -> Abs (Tele a) -> Tele a) -> a -> Abs (Tele a) -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' a -> Abs (Tele a) -> Tele a
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel a
a Abs (Tele a)
b
value :: Int32 -> R (Tele a)
value = (Node -> R (Tele a)) -> Int32 -> R (Tele a)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (Tele a)
forall a. EmbPrj a => Node -> R (Tele a)
valu where
valu :: Node -> R (Tele a)
valu [] = Tele a
-> Arrows
(Constant Int32 (Domains (Tele a))) (R (CoDomain (Tele a)))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Tele a
forall a. Tele a
EmptyTel
valu [Int32
a, Int32
b] = (a -> Abs (Tele a) -> Tele a) -> Int32 -> Int32 -> R (Tele a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN a -> Abs (Tele a) -> Tele a
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Int32
a Int32
b
valu Node
_ = R (Tele a)
forall a. R a
malformed
instance EmbPrj Permutation where
icod_ :: Permutation -> S Int32
icod_ (Perm Int
a [Int]
b) = (Int -> [Int] -> Permutation) -> Int -> [Int] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Int -> [Int] -> Permutation
Perm Int
a [Int]
b
value :: Int32 -> R Permutation
value = (Int -> [Int] -> Permutation)
-> Int32 -> R (CoDomain (Int -> [Int] -> Permutation))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Int -> [Int] -> Permutation
Perm
instance EmbPrj a => EmbPrj (Drop a) where
icod_ :: Drop a -> S Int32
icod_ (Drop Int
a a
b) = (Int -> a -> Drop a) -> Int -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Int -> a -> Drop a
forall a. Int -> a -> Drop a
Drop Int
a a
b
value :: Int32 -> R (Drop a)
value = (Int -> a -> Drop a) -> Int32 -> R (CoDomain (Int -> a -> Drop a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Int -> a -> Drop a
forall a. Int -> a -> Drop a
Drop
instance EmbPrj a => EmbPrj (Elim' a) where
icod_ :: Elim' a -> S Int32
icod_ (Apply Arg a
a) = (Arg a -> Elim' a) -> Arg a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Arg a -> Elim' a
forall a. Arg a -> Elim' a
Apply Arg a
a
icod_ (IApply a
x a
y a
a) = Int32 -> (a -> a -> a -> Elim' a) -> a -> a -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 a -> a -> a -> Elim' a
forall a. a -> a -> a -> Elim' a
IApply a
x a
y a
a
icod_ (Proj ProjOrigin
a QName
b) = Int32
-> (ProjOrigin -> QName -> Elim' Any)
-> ProjOrigin
-> QName
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 ProjOrigin -> QName -> Elim' Any
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
a QName
b
value :: Int32 -> R (Elim' a)
value = (Node -> R (Elim' a)) -> Int32 -> R (Elim' a)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (Elim' a)
forall a. EmbPrj a => Node -> R (Elim' a)
valu where
valu :: Node -> R (Elim' a)
valu [Int32
a] = (Arg a -> Elim' a) -> Int32 -> R (Elim' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Arg a -> Elim' a
forall a. Arg a -> Elim' a
Apply Int32
a
valu [Int32
0,Int32
x,Int32
y,Int32
a] = (a -> a -> a -> Elim' a) -> Int32 -> Int32 -> Int32 -> R (Elim' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN a -> a -> a -> Elim' a
forall a. a -> a -> a -> Elim' a
IApply Int32
x Int32
y Int32
a
valu [Int32
0, Int32
a, Int32
b] = (ProjOrigin -> QName -> Elim' a) -> Int32 -> Int32 -> R (Elim' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ProjOrigin -> QName -> Elim' a
forall a. ProjOrigin -> QName -> Elim' a
Proj Int32
a Int32
b
valu Node
_ = R (Elim' a)
forall a. R a
malformed
instance EmbPrj I.DataOrRecord where
icod_ :: DataOrRecord -> S Int32
icod_ = \case
DataOrRecord
IsData -> DataOrRecord -> Arrows (Domains DataOrRecord) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' DataOrRecord
IsData
IsRecord PatternOrCopattern
pm -> (PatternOrCopattern -> DataOrRecord)
-> PatternOrCopattern -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' PatternOrCopattern -> DataOrRecord
IsRecord PatternOrCopattern
pm
value :: Int32 -> R DataOrRecord
value = (Node -> R DataOrRecord) -> Int32 -> R DataOrRecord
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase ((Node -> R DataOrRecord) -> Int32 -> R DataOrRecord)
-> (Node -> R DataOrRecord) -> Int32 -> R DataOrRecord
forall a b. (a -> b) -> a -> b
$ \case
[] -> DataOrRecord
-> Arrows
(Constant Int32 (Domains DataOrRecord)) (R (CoDomain DataOrRecord))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN DataOrRecord
IsData
[Int32
pm] -> (PatternOrCopattern -> DataOrRecord) -> Int32 -> R DataOrRecord
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatternOrCopattern -> DataOrRecord
IsRecord Int32
pm
Node
_ -> R DataOrRecord
forall a. R a
malformed
instance EmbPrj I.ConHead where
icod_ :: ConHead -> S Int32
icod_ (ConHead QName
a DataOrRecord
b Induction
c [Arg QName]
d) = (QName -> DataOrRecord -> Induction -> [Arg QName] -> ConHead)
-> QName -> DataOrRecord -> Induction -> [Arg QName] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' QName -> DataOrRecord -> Induction -> [Arg QName] -> ConHead
ConHead QName
a DataOrRecord
b Induction
c [Arg QName]
d
value :: Int32 -> R ConHead
value = (QName -> DataOrRecord -> Induction -> [Arg QName] -> ConHead)
-> Int32
-> R (CoDomain
(QName -> DataOrRecord -> Induction -> [Arg QName] -> ConHead))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN QName -> DataOrRecord -> Induction -> [Arg QName] -> ConHead
ConHead
instance (EmbPrj a) => EmbPrj (I.Type' a) where
icod_ :: Type' a -> S Int32
icod_ (El Sort' Term
a a
b) = (Sort' Term -> a -> Type' a) -> Sort' Term -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Sort' Term -> a -> Type' a
forall t a. Sort' t -> a -> Type'' t a
El Sort' Term
a a
b
value :: Int32 -> R (Type' a)
value = (Sort' Term -> a -> Type' a)
-> Int32 -> R (CoDomain (Sort' Term -> a -> Type' a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Sort' Term -> a -> Type' a
forall t a. Sort' t -> a -> Type'' t a
El
instance EmbPrj a => EmbPrj (I.Abs a) where
icod_ :: Abs a -> S Int32
icod_ (NoAbs ArgName
a a
b) = Int32 -> (ArgName -> a -> Abs a) -> ArgName -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 ArgName -> a -> Abs a
forall a. ArgName -> a -> Abs a
NoAbs ArgName
a a
b
icod_ (Abs ArgName
a a
b) = (ArgName -> a -> Abs a) -> ArgName -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' ArgName -> a -> Abs a
forall a. ArgName -> a -> Abs a
Abs ArgName
a a
b
value :: Int32 -> R (Abs a)
value = (Node -> R (Abs a)) -> Int32 -> R (Abs a)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (Abs a)
forall a. EmbPrj a => Node -> R (Abs a)
valu where
valu :: Node -> R (Abs a)
valu [Int32
a, Int32
b] = (ArgName -> a -> Abs a) -> Int32 -> Int32 -> R (Abs a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ArgName -> a -> Abs a
forall a. ArgName -> a -> Abs a
Abs Int32
a Int32
b
valu [Int32
0, Int32
a, Int32
b] = (ArgName -> a -> Abs a) -> Int32 -> Int32 -> R (Abs a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ArgName -> a -> Abs a
forall a. ArgName -> a -> Abs a
NoAbs Int32
a Int32
b
valu Node
_ = R (Abs a)
forall a. R a
malformed
instance EmbPrj I.Term where
icod_ :: Term -> S Int32
icod_ (Var Int
a []) = (Int -> Term) -> Int -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' (\ Int
a -> Int -> [Elim] -> Term
Var Int
a []) Int
a
icod_ (Var Int
a [Elim]
b) = Int32 -> (Int -> [Elim] -> Term) -> Int -> [Elim] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 Int -> [Elim] -> Term
Var Int
a [Elim]
b
icod_ (Lam ArgInfo
a Abs Term
b) = Int32
-> (ArgInfo -> Abs Term -> Term) -> ArgInfo -> Abs Term -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 ArgInfo -> Abs Term -> Term
Lam ArgInfo
a Abs Term
b
icod_ (Lit Literal
a ) = Int32 -> (Literal -> Term) -> Literal -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 Literal -> Term
Lit Literal
a
icod_ (Def QName
a [Elim]
b) = Int32 -> (QName -> [Elim] -> Term) -> QName -> [Elim] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 QName -> [Elim] -> Term
Def QName
a [Elim]
b
icod_ (Con ConHead
a ConInfo
b [Elim]
c) = Int32
-> (ConHead -> ConInfo -> [Elim] -> Term)
-> ConHead
-> ConInfo
-> [Elim]
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
4 ConHead -> ConInfo -> [Elim] -> Term
Con ConHead
a ConInfo
b [Elim]
c
icod_ (Pi Dom Type
a Abs Type
b) = Int32
-> (Dom Type -> Abs Type -> Term)
-> Dom Type
-> Abs Type
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
5 Dom Type -> Abs Type -> Term
Pi Dom Type
a Abs Type
b
icod_ (Sort Sort' Term
a ) = Int32 -> (Sort' Term -> Term) -> Sort' Term -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
7 Sort' Term -> Term
Sort Sort' Term
a
icod_ (MetaV MetaId
a [Elim]
b) = S Int32
forall a. HasCallStack => a
__IMPOSSIBLE__
icod_ (DontCare Term
a ) = Int32 -> (Term -> Term) -> Term -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
8 Term -> Term
DontCare Term
a
icod_ (Level Level
a ) = Int32 -> (Level -> Term) -> Level -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
9 Level -> Term
Level Level
a
icod_ (Dummy ArgName
s [Elim]
_) = do
IO () -> ReaderT Dict IO ()
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO () -> ReaderT Dict IO ()) -> IO () -> ReaderT Dict IO ()
forall a b. (a -> b) -> a -> b
$ ArgName -> IO ()
putStrLn (ArgName -> IO ()) -> ArgName -> IO ()
forall a b. (a -> b) -> a -> b
$ ArgName
"Dummy term in serialization: " ArgName -> ArgName -> ArgName
forall a. [a] -> [a] -> [a]
++ ArgName
s
S Int32
forall a. HasCallStack => a
__IMPOSSIBLE__
value :: Int32 -> R Term
value = (Node -> R Term) -> Int32 -> R Term
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R Term
valu where
valu :: Node -> R Term
valu [Int32
a] = (Int -> Term) -> Int32 -> R Term
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int -> Term
var Int32
a
valu [Int32
0, Int32
a, Int32
b] = (Int -> [Elim] -> Term) -> Int32 -> Int32 -> R Term
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int -> [Elim] -> Term
Var Int32
a Int32
b
valu [Int32
1, Int32
a, Int32
b] = (ArgInfo -> Abs Term -> Term) -> Int32 -> Int32 -> R Term
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ArgInfo -> Abs Term -> Term
Lam Int32
a Int32
b
valu [Int32
2, Int32
a] = (Literal -> Term) -> Int32 -> R Term
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Literal -> Term
Lit Int32
a
valu [Int32
3, Int32
a, Int32
b] = (QName -> [Elim] -> Term) -> Int32 -> Int32 -> R Term
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN QName -> [Elim] -> Term
Def Int32
a Int32
b
valu [Int32
4, Int32
a, Int32
b, Int32
c] = (ConHead -> ConInfo -> [Elim] -> Term)
-> Int32 -> Int32 -> Int32 -> R Term
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ConHead -> ConInfo -> [Elim] -> Term
Con Int32
a Int32
b Int32
c
valu [Int32
5, Int32
a, Int32
b] = (Dom Type -> Abs Type -> Term) -> Int32 -> Int32 -> R Term
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Dom Type -> Abs Type -> Term
Pi Int32
a Int32
b
valu [Int32
7, Int32
a] = (Sort' Term -> Term) -> Int32 -> R Term
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Sort' Term -> Term
Sort Int32
a
valu [Int32
8, Int32
a] = (Term -> Term) -> Int32 -> R Term
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Term -> Term
DontCare Int32
a
valu [Int32
9, Int32
a] = (Level -> Term) -> Int32 -> R Term
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Level -> Term
Level Int32
a
valu Node
_ = R Term
forall a. R a
malformed
instance EmbPrj Level where
icod_ :: Level -> S Int32
icod_ (Max Integer
a [PlusLevel' Term]
b) = (Integer -> [PlusLevel' Term] -> Level)
-> Integer -> [PlusLevel' Term] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Integer -> [PlusLevel' Term] -> Level
forall t. Integer -> [PlusLevel' t] -> Level' t
Max Integer
a [PlusLevel' Term]
b
value :: Int32 -> R Level
value = (Integer -> [PlusLevel' Term] -> Level)
-> Int32 -> R (CoDomain (Integer -> [PlusLevel' Term] -> Level))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Integer -> [PlusLevel' Term] -> Level
forall t. Integer -> [PlusLevel' t] -> Level' t
Max
instance EmbPrj PlusLevel where
icod_ :: PlusLevel' Term -> S Int32
icod_ (Plus Integer
a Term
b) = (Integer -> Term -> PlusLevel' Term) -> Integer -> Term -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Integer -> Term -> PlusLevel' Term
forall t. Integer -> t -> PlusLevel' t
Plus Integer
a Term
b
value :: Int32 -> R (PlusLevel' Term)
value = (Integer -> Term -> PlusLevel' Term)
-> Int32 -> R (CoDomain (Integer -> Term -> PlusLevel' Term))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Integer -> Term -> PlusLevel' Term
forall t. Integer -> t -> PlusLevel' t
Plus
instance EmbPrj IsFibrant where
icod_ :: IsFibrant -> S Int32
icod_ IsFibrant
IsFibrant = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
icod_ IsFibrant
IsStrict = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
value :: Int32 -> R IsFibrant
value Int32
0 = IsFibrant -> R IsFibrant
forall (m :: * -> *) a. Monad m => a -> m a
return IsFibrant
IsFibrant
value Int32
1 = IsFibrant -> R IsFibrant
forall (m :: * -> *) a. Monad m => a -> m a
return IsFibrant
IsStrict
value Int32
_ = R IsFibrant
forall a. R a
malformed
instance EmbPrj I.Sort where
icod_ :: Sort' Term -> S Int32
icod_ (Type Level
a ) = Int32 -> (Level -> Sort' Term) -> Level -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 Level -> Sort' Term
forall t. Level' t -> Sort' t
Type Level
a
icod_ (Prop Level
a ) = Int32 -> (Level -> Sort' Term) -> Level -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Level -> Sort' Term
forall t. Level' t -> Sort' t
Prop Level
a
icod_ Sort' Term
SizeUniv = Int32 -> Sort' Any -> Arrows (Domains (Sort' Any)) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 Sort' Any
forall t. Sort' t
SizeUniv
icod_ (Inf IsFibrant
f Integer
a) = Int32
-> (IsFibrant -> Integer -> Sort' Any)
-> IsFibrant
-> Integer
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 IsFibrant -> Integer -> Sort' Any
forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
f Integer
a
icod_ (PiSort Dom' Term Term
a Sort' Term
b Abs (Sort' Term)
c) = Int32
-> (Dom' Term Term -> Sort' Term -> Abs (Sort' Term) -> Sort' Term)
-> Dom' Term Term
-> Sort' Term
-> Abs (Sort' Term)
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
4 Dom' Term Term -> Sort' Term -> Abs (Sort' Term) -> Sort' Term
forall t. Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t
PiSort Dom' Term Term
a Sort' Term
b Abs (Sort' Term)
c
icod_ (FunSort Sort' Term
a Sort' Term
b) = Int32
-> (Sort' Term -> Sort' Term -> Sort' Term)
-> Sort' Term
-> Sort' Term
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
5 Sort' Term -> Sort' Term -> Sort' Term
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort' Term
a Sort' Term
b
icod_ (UnivSort Sort' Term
a) = Int32 -> (Sort' Term -> Sort' Term) -> Sort' Term -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
6 Sort' Term -> Sort' Term
forall t. Sort' t -> Sort' t
UnivSort Sort' Term
a
icod_ (MetaS MetaId
a [Elim]
b) = S Int32
forall a. HasCallStack => a
__IMPOSSIBLE__
icod_ (DefS QName
a [Elim]
b) = Int32
-> (QName -> [Elim] -> Sort' Term) -> QName -> [Elim] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
7 QName -> [Elim] -> Sort' Term
forall t. QName -> [Elim' t] -> Sort' t
DefS QName
a [Elim]
b
icod_ (SSet Level
a ) = Int32 -> (Level -> Sort' Term) -> Level -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
8 Level -> Sort' Term
forall t. Level' t -> Sort' t
SSet Level
a
icod_ Sort' Term
LockUniv = Int32 -> Sort' Any -> Arrows (Domains (Sort' Any)) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
9 Sort' Any
forall t. Sort' t
LockUniv
icod_ (DummyS ArgName
s) = do
IO () -> ReaderT Dict IO ()
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO () -> ReaderT Dict IO ()) -> IO () -> ReaderT Dict IO ()
forall a b. (a -> b) -> a -> b
$ ArgName -> IO ()
putStrLn (ArgName -> IO ()) -> ArgName -> IO ()
forall a b. (a -> b) -> a -> b
$ ArgName
"Dummy sort in serialization: " ArgName -> ArgName -> ArgName
forall a. [a] -> [a] -> [a]
++ ArgName
s
S Int32
forall a. HasCallStack => a
__IMPOSSIBLE__
value :: Int32 -> R (Sort' Term)
value = (Node -> R (Sort' Term)) -> Int32 -> R (Sort' Term)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (Sort' Term)
forall t.
(EmbPrj t, EmbPrj (Dom' t t), EmbPrj (Level' t),
EmbPrj (Sort' t)) =>
Node -> R (Sort' t)
valu where
valu :: Node -> R (Sort' t)
valu [Int32
0, Int32
a] = (Level' t -> Sort' t) -> Int32 -> R (Sort' t)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Level' t -> Sort' t
forall t. Level' t -> Sort' t
Type Int32
a
valu [Int32
1, Int32
a] = (Level' t -> Sort' t) -> Int32 -> R (Sort' t)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Level' t -> Sort' t
forall t. Level' t -> Sort' t
Prop Int32
a
valu [Int32
2] = Sort' t
-> Arrows
(Constant Int32 (Domains (Sort' t))) (R (CoDomain (Sort' t)))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Sort' t
forall t. Sort' t
SizeUniv
valu [Int32
3, Int32
f, Int32
a] = (IsFibrant -> Integer -> Sort' t) -> Int32 -> Int32 -> R (Sort' t)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN IsFibrant -> Integer -> Sort' t
forall t. IsFibrant -> Integer -> Sort' t
Inf Int32
f Int32
a
valu [Int32
4, Int32
a, Int32
b, Int32
c] = (Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t)
-> Int32 -> Int32 -> Int32 -> R (Sort' t)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t
forall t. Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t
PiSort Int32
a Int32
b Int32
c
valu [Int32
5, Int32
a, Int32
b] = (Sort' t -> Sort' t -> Sort' t) -> Int32 -> Int32 -> R (Sort' t)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Sort' t -> Sort' t -> Sort' t
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Int32
a Int32
b
valu [Int32
6, Int32
a] = (Sort' t -> Sort' t) -> Int32 -> R (Sort' t)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Sort' t -> Sort' t
forall t. Sort' t -> Sort' t
UnivSort Int32
a
valu [Int32
7, Int32
a, Int32
b] = (QName -> [Elim' t] -> Sort' t) -> Int32 -> Int32 -> R (Sort' t)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN QName -> [Elim' t] -> Sort' t
forall t. QName -> [Elim' t] -> Sort' t
DefS Int32
a Int32
b
valu [Int32
8, Int32
a] = (Level' t -> Sort' t) -> Int32 -> R (Sort' t)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Level' t -> Sort' t
forall t. Level' t -> Sort' t
SSet Int32
a
valu [Int32
9] = Sort' t
-> Arrows
(Constant Int32 (Domains (Sort' t))) (R (CoDomain (Sort' t)))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Sort' t
forall t. Sort' t
LockUniv
valu Node
_ = R (Sort' t)
forall a. R a
malformed
instance EmbPrj DisplayForm where
icod_ :: DisplayForm -> S Int32
icod_ (Display Int
a [Elim]
b DisplayTerm
c) = (Int -> [Elim] -> DisplayTerm -> DisplayForm)
-> Int -> [Elim] -> DisplayTerm -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Int -> [Elim] -> DisplayTerm -> DisplayForm
Display Int
a [Elim]
b DisplayTerm
c
value :: Int32 -> R DisplayForm
value = (Int -> [Elim] -> DisplayTerm -> DisplayForm)
-> Int32
-> R (CoDomain (Int -> [Elim] -> DisplayTerm -> DisplayForm))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Int -> [Elim] -> DisplayTerm -> DisplayForm
Display
instance EmbPrj a => EmbPrj (Open a) where
icod_ :: Open a -> S Int32
icod_ (OpenThing CheckpointId
a Map CheckpointId Substitution
b ModuleNameHash
c a
d) = (CheckpointId
-> Map CheckpointId Substitution -> ModuleNameHash -> a -> Open a)
-> CheckpointId
-> Map CheckpointId Substitution
-> ModuleNameHash
-> a
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' CheckpointId
-> Map CheckpointId Substitution -> ModuleNameHash -> a -> Open a
forall a.
CheckpointId
-> Map CheckpointId Substitution -> ModuleNameHash -> a -> Open a
OpenThing CheckpointId
a Map CheckpointId Substitution
b ModuleNameHash
c a
d
value :: Int32 -> R (Open a)
value = (CheckpointId
-> Map CheckpointId Substitution -> ModuleNameHash -> a -> Open a)
-> Int32
-> R (CoDomain
(CheckpointId
-> Map CheckpointId Substitution -> ModuleNameHash -> a -> Open a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN CheckpointId
-> Map CheckpointId Substitution -> ModuleNameHash -> a -> Open a
forall a.
CheckpointId
-> Map CheckpointId Substitution -> ModuleNameHash -> a -> Open a
OpenThing
instance EmbPrj CheckpointId where
icod_ :: CheckpointId -> S Int32
icod_ (CheckpointId Int
a) = Int -> S Int32
forall a. EmbPrj a => a -> S Int32
icode Int
a
value :: Int32 -> R CheckpointId
value Int32
n = Int -> CheckpointId
CheckpointId (Int -> CheckpointId)
-> ExceptT TypeError (StateT St IO) Int -> R CheckpointId
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` Int32 -> ExceptT TypeError (StateT St IO) Int
forall a. EmbPrj a => Int32 -> R a
value Int32
n
instance EmbPrj DisplayTerm where
icod_ :: DisplayTerm -> S Int32
icod_ (DTerm Term
a ) = (Term -> DisplayTerm) -> Term -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Term -> DisplayTerm
DTerm Term
a
icod_ (DDot Term
a ) = Int32 -> (Term -> DisplayTerm) -> Term -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Term -> DisplayTerm
DDot Term
a
icod_ (DCon ConHead
a ConInfo
b [Arg DisplayTerm]
c) = Int32
-> (ConHead -> ConInfo -> [Arg DisplayTerm] -> DisplayTerm)
-> ConHead
-> ConInfo
-> [Arg DisplayTerm]
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 ConHead -> ConInfo -> [Arg DisplayTerm] -> DisplayTerm
DCon ConHead
a ConInfo
b [Arg DisplayTerm]
c
icod_ (DDef QName
a [Elim' DisplayTerm]
b) = Int32
-> (QName -> [Elim' DisplayTerm] -> DisplayTerm)
-> QName
-> [Elim' DisplayTerm]
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 QName -> [Elim' DisplayTerm] -> DisplayTerm
DDef QName
a [Elim' DisplayTerm]
b
icod_ (DWithApp DisplayTerm
a [DisplayTerm]
b [Elim]
c) = Int32
-> (DisplayTerm -> [DisplayTerm] -> [Elim] -> DisplayTerm)
-> DisplayTerm
-> [DisplayTerm]
-> [Elim]
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
4 DisplayTerm -> [DisplayTerm] -> [Elim] -> DisplayTerm
DWithApp DisplayTerm
a [DisplayTerm]
b [Elim]
c
value :: Int32 -> R DisplayTerm
value = (Node -> R DisplayTerm) -> Int32 -> R DisplayTerm
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R DisplayTerm
valu where
valu :: Node -> R DisplayTerm
valu [Int32
a] = (Term -> DisplayTerm) -> Int32 -> R DisplayTerm
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Term -> DisplayTerm
DTerm Int32
a
valu [Int32
1, Int32
a] = (Term -> DisplayTerm) -> Int32 -> R DisplayTerm
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Term -> DisplayTerm
DDot Int32
a
valu [Int32
2, Int32
a, Int32
b, Int32
c] = (ConHead -> ConInfo -> [Arg DisplayTerm] -> DisplayTerm)
-> Int32 -> Int32 -> Int32 -> R DisplayTerm
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ConHead -> ConInfo -> [Arg DisplayTerm] -> DisplayTerm
DCon Int32
a Int32
b Int32
c
valu [Int32
3, Int32
a, Int32
b] = (QName -> [Elim' DisplayTerm] -> DisplayTerm)
-> Int32 -> Int32 -> R DisplayTerm
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN QName -> [Elim' DisplayTerm] -> DisplayTerm
DDef Int32
a Int32
b
valu [Int32
4, Int32
a, Int32
b, Int32
c] = (DisplayTerm -> [DisplayTerm] -> [Elim] -> DisplayTerm)
-> Int32 -> Int32 -> Int32 -> R DisplayTerm
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN DisplayTerm -> [DisplayTerm] -> [Elim] -> DisplayTerm
DWithApp Int32
a Int32
b Int32
c
valu Node
_ = R DisplayTerm
forall a. R a
malformed
instance EmbPrj MutualId where
icod_ :: MutualId -> S Int32
icod_ (MutId Int32
a) = Int32 -> S Int32
forall a. EmbPrj a => a -> S Int32
icode Int32
a
value :: Int32 -> R MutualId
value Int32
n = Int32 -> MutualId
MutId (Int32 -> MutualId)
-> ExceptT TypeError (StateT St IO) Int32 -> R MutualId
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` Int32 -> ExceptT TypeError (StateT St IO) Int32
forall a. EmbPrj a => Int32 -> R a
value Int32
n
instance EmbPrj CompKit where
icod_ :: CompKit -> S Int32
icod_ (CompKit Maybe QName
a Maybe QName
b) = (Maybe QName -> Maybe QName -> CompKit)
-> Maybe QName -> Maybe QName -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Maybe QName -> Maybe QName -> CompKit
CompKit Maybe QName
a Maybe QName
b
value :: Int32 -> R CompKit
value = (Maybe QName -> Maybe QName -> CompKit)
-> Int32 -> R (CoDomain (Maybe QName -> Maybe QName -> CompKit))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Maybe QName -> Maybe QName -> CompKit
CompKit
instance EmbPrj Definition where
icod_ :: Definition -> S Int32
icod_ (Defn ArgInfo
a QName
b Type
c [Polarity]
d [Occurrence]
e NumGeneralizableArgs
f [Maybe Name]
g [LocalDisplayForm]
h MutualId
i CompiledRepresentation
j Maybe QName
k Bool
l Set QName
m Bool
n Bool
o Bool
p Blocked_
q Language
r Defn
s) = (ArgInfo
-> QName
-> Type
-> [Polarity]
-> [Occurrence]
-> NumGeneralizableArgs
-> [Maybe Name]
-> [LocalDisplayForm]
-> MutualId
-> CompiledRepresentation
-> Maybe QName
-> Bool
-> Set QName
-> Bool
-> Bool
-> Bool
-> Blocked_
-> Language
-> Defn
-> Definition)
-> ArgInfo
-> QName
-> Type
-> [Polarity]
-> [Occurrence]
-> NumGeneralizableArgs
-> [Maybe Name]
-> [LocalDisplayForm]
-> MutualId
-> CompiledRepresentation
-> Maybe QName
-> Bool
-> Set QName
-> Bool
-> Bool
-> Bool
-> Blocked_
-> Language
-> Defn
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' ArgInfo
-> QName
-> Type
-> [Polarity]
-> [Occurrence]
-> NumGeneralizableArgs
-> [Maybe Name]
-> [LocalDisplayForm]
-> MutualId
-> CompiledRepresentation
-> Maybe QName
-> Bool
-> Set QName
-> Bool
-> Bool
-> Bool
-> Blocked_
-> Language
-> Defn
-> Definition
Defn ArgInfo
a QName
b (KillRangeT Type
forall a. KillRange a => KillRangeT a
P.killRange Type
c) [Polarity]
d [Occurrence]
e NumGeneralizableArgs
f [Maybe Name]
g [LocalDisplayForm]
h MutualId
i CompiledRepresentation
j Maybe QName
k Bool
l Set QName
m Bool
n Bool
o Bool
p Blocked_
q Language
r Defn
s
value :: Int32 -> R Definition
value = (ArgInfo
-> QName
-> Type
-> [Polarity]
-> [Occurrence]
-> NumGeneralizableArgs
-> [Maybe Name]
-> [LocalDisplayForm]
-> MutualId
-> CompiledRepresentation
-> Maybe QName
-> Bool
-> Set QName
-> Bool
-> Bool
-> Bool
-> Blocked_
-> Language
-> Defn
-> Definition)
-> Int32
-> R (CoDomain
(ArgInfo
-> QName
-> Type
-> [Polarity]
-> [Occurrence]
-> NumGeneralizableArgs
-> [Maybe Name]
-> [LocalDisplayForm]
-> MutualId
-> CompiledRepresentation
-> Maybe QName
-> Bool
-> Set QName
-> Bool
-> Bool
-> Bool
-> Blocked_
-> Language
-> Defn
-> Definition))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN ArgInfo
-> QName
-> Type
-> [Polarity]
-> [Occurrence]
-> NumGeneralizableArgs
-> [Maybe Name]
-> [LocalDisplayForm]
-> MutualId
-> CompiledRepresentation
-> Maybe QName
-> Bool
-> Set QName
-> Bool
-> Bool
-> Bool
-> Blocked_
-> Language
-> Defn
-> Definition
Defn
instance EmbPrj NotBlocked where
icod_ :: NotBlocked -> S Int32
icod_ NotBlocked
ReallyNotBlocked = NotBlocked' Any -> Arrows (Domains (NotBlocked' Any)) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' NotBlocked' Any
forall t. NotBlocked' t
ReallyNotBlocked
icod_ (StuckOn Elim
a) = Int32 -> (Elim -> NotBlocked) -> Elim -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 Elim -> NotBlocked
forall t. Elim' t -> NotBlocked' t
StuckOn Elim
a
icod_ NotBlocked
Underapplied = Int32
-> NotBlocked' Any -> Arrows (Domains (NotBlocked' Any)) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 NotBlocked' Any
forall t. NotBlocked' t
Underapplied
icod_ NotBlocked
AbsurdMatch = Int32
-> NotBlocked' Any -> Arrows (Domains (NotBlocked' Any)) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 NotBlocked' Any
forall t. NotBlocked' t
AbsurdMatch
icod_ NotBlocked
MissingClauses = Int32
-> NotBlocked' Any -> Arrows (Domains (NotBlocked' Any)) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 NotBlocked' Any
forall t. NotBlocked' t
MissingClauses
value :: Int32 -> R NotBlocked
value = (Node -> R NotBlocked) -> Int32 -> R NotBlocked
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R NotBlocked
forall t. EmbPrj t => Node -> R (NotBlocked' t)
valu where
valu :: Node -> R (NotBlocked' t)
valu [] = NotBlocked' t
-> Arrows
(Constant Int32 (Domains (NotBlocked' t)))
(R (CoDomain (NotBlocked' t)))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NotBlocked' t
forall t. NotBlocked' t
ReallyNotBlocked
valu [Int32
0, Int32
a] = (Elim' t -> NotBlocked' t) -> Int32 -> R (NotBlocked' t)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Elim' t -> NotBlocked' t
forall t. Elim' t -> NotBlocked' t
StuckOn Int32
a
valu [Int32
1] = NotBlocked' t
-> Arrows
(Constant Int32 (Domains (NotBlocked' t)))
(R (CoDomain (NotBlocked' t)))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NotBlocked' t
forall t. NotBlocked' t
Underapplied
valu [Int32
2] = NotBlocked' t
-> Arrows
(Constant Int32 (Domains (NotBlocked' t)))
(R (CoDomain (NotBlocked' t)))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NotBlocked' t
forall t. NotBlocked' t
AbsurdMatch
valu [Int32
3] = NotBlocked' t
-> Arrows
(Constant Int32 (Domains (NotBlocked' t)))
(R (CoDomain (NotBlocked' t)))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NotBlocked' t
forall t. NotBlocked' t
MissingClauses
valu Node
_ = R (NotBlocked' t)
forall a. R a
malformed
instance EmbPrj Blocked_ where
icod_ :: Blocked_ -> S Int32
icod_ (NotBlocked NotBlocked
a ()
b) = (NotBlocked -> () -> Blocked_) -> NotBlocked -> () -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' NotBlocked -> () -> Blocked_
forall t a. NotBlocked' t -> a -> Blocked' t a
NotBlocked NotBlocked
a ()
b
icod_ Blocked{} = S Int32
forall a. HasCallStack => a
__IMPOSSIBLE__
value :: Int32 -> R Blocked_
value = (NotBlocked -> () -> Blocked_)
-> Int32 -> R (CoDomain (NotBlocked -> () -> Blocked_))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN NotBlocked -> () -> Blocked_
forall t a. NotBlocked' t -> a -> Blocked' t a
NotBlocked
instance EmbPrj NLPat where
icod_ :: NLPat -> S Int32
icod_ (PVar Int
a [Arg Int]
b) = Int32 -> (Int -> [Arg Int] -> NLPat) -> Int -> [Arg Int] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 Int -> [Arg Int] -> NLPat
PVar Int
a [Arg Int]
b
icod_ (PDef QName
a PElims
b) = Int32 -> (QName -> PElims -> NLPat) -> QName -> PElims -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 QName -> PElims -> NLPat
PDef QName
a PElims
b
icod_ (PLam ArgInfo
a Abs NLPat
b) = Int32
-> (ArgInfo -> Abs NLPat -> NLPat)
-> ArgInfo
-> Abs NLPat
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 ArgInfo -> Abs NLPat -> NLPat
PLam ArgInfo
a Abs NLPat
b
icod_ (PPi Dom NLPType
a Abs NLPType
b) = Int32
-> (Dom NLPType -> Abs NLPType -> NLPat)
-> Dom NLPType
-> Abs NLPType
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 Dom NLPType -> Abs NLPType -> NLPat
PPi Dom NLPType
a Abs NLPType
b
icod_ (PSort NLPSort
a) = Int32 -> (NLPSort -> NLPat) -> NLPSort -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
4 NLPSort -> NLPat
PSort NLPSort
a
icod_ (PBoundVar Int
a PElims
b) = Int32 -> (Int -> PElims -> NLPat) -> Int -> PElims -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
5 Int -> PElims -> NLPat
PBoundVar Int
a PElims
b
icod_ (PTerm Term
a) = Int32 -> (Term -> NLPat) -> Term -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
6 Term -> NLPat
PTerm Term
a
value :: Int32 -> R NLPat
value = (Node -> R NLPat) -> Int32 -> R NLPat
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R NLPat
valu where
valu :: Node -> R NLPat
valu [Int32
0, Int32
a, Int32
b] = (Int -> [Arg Int] -> NLPat) -> Int32 -> Int32 -> R NLPat
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int -> [Arg Int] -> NLPat
PVar Int32
a Int32
b
valu [Int32
1, Int32
a, Int32
b] = (QName -> PElims -> NLPat) -> Int32 -> Int32 -> R NLPat
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN QName -> PElims -> NLPat
PDef Int32
a Int32
b
valu [Int32
2, Int32
a, Int32
b] = (ArgInfo -> Abs NLPat -> NLPat) -> Int32 -> Int32 -> R NLPat
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ArgInfo -> Abs NLPat -> NLPat
PLam Int32
a Int32
b
valu [Int32
3, Int32
a, Int32
b] = (Dom NLPType -> Abs NLPType -> NLPat) -> Int32 -> Int32 -> R NLPat
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Dom NLPType -> Abs NLPType -> NLPat
PPi Int32
a Int32
b
valu [Int32
4, Int32
a] = (NLPSort -> NLPat) -> Int32 -> R NLPat
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NLPSort -> NLPat
PSort Int32
a
valu [Int32
5, Int32
a, Int32
b] = (Int -> PElims -> NLPat) -> Int32 -> Int32 -> R NLPat
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int -> PElims -> NLPat
PBoundVar Int32
a Int32
b
valu [Int32
6, Int32
a] = (Term -> NLPat) -> Int32 -> R NLPat
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Term -> NLPat
PTerm Int32
a
valu Node
_ = R NLPat
forall a. R a
malformed
instance EmbPrj NLPType where
icod_ :: NLPType -> S Int32
icod_ (NLPType NLPSort
a NLPat
b) = (NLPSort -> NLPat -> NLPType) -> NLPSort -> NLPat -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' NLPSort -> NLPat -> NLPType
NLPType NLPSort
a NLPat
b
value :: Int32 -> R NLPType
value = (NLPSort -> NLPat -> NLPType)
-> Int32 -> R (CoDomain (NLPSort -> NLPat -> NLPType))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN NLPSort -> NLPat -> NLPType
NLPType
instance EmbPrj NLPSort where
icod_ :: NLPSort -> S Int32
icod_ (PType NLPat
a) = Int32 -> (NLPat -> NLPSort) -> NLPat -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 NLPat -> NLPSort
PType NLPat
a
icod_ (PProp NLPat
a) = Int32 -> (NLPat -> NLPSort) -> NLPat -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 NLPat -> NLPSort
PProp NLPat
a
icod_ (PInf IsFibrant
f Integer
a) = Int32
-> (IsFibrant -> Integer -> NLPSort)
-> IsFibrant
-> Integer
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 IsFibrant -> Integer -> NLPSort
PInf IsFibrant
f Integer
a
icod_ NLPSort
PSizeUniv = Int32 -> NLPSort -> Arrows (Domains NLPSort) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 NLPSort
PSizeUniv
icod_ NLPSort
PLockUniv = Int32 -> NLPSort -> Arrows (Domains NLPSort) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
4 NLPSort
PSizeUniv
value :: Int32 -> R NLPSort
value = (Node -> R NLPSort) -> Int32 -> R NLPSort
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R NLPSort
valu where
valu :: Node -> R NLPSort
valu [Int32
0, Int32
a] = (NLPat -> NLPSort) -> Int32 -> R NLPSort
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NLPat -> NLPSort
PType Int32
a
valu [Int32
1, Int32
a] = (NLPat -> NLPSort) -> Int32 -> R NLPSort
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NLPat -> NLPSort
PProp Int32
a
valu [Int32
2, Int32
f, Int32
a] = (IsFibrant -> Integer -> NLPSort) -> Int32 -> Int32 -> R NLPSort
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN IsFibrant -> Integer -> NLPSort
PInf Int32
f Int32
a
valu [Int32
3] = NLPSort
-> Arrows (Constant Int32 (Domains NLPSort)) (R (CoDomain NLPSort))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NLPSort
PSizeUniv
valu [Int32
4] = NLPSort
-> Arrows (Constant Int32 (Domains NLPSort)) (R (CoDomain NLPSort))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NLPSort
PLockUniv
valu Node
_ = R NLPSort
forall a. R a
malformed
instance EmbPrj RewriteRule where
icod_ :: RewriteRule -> S Int32
icod_ (RewriteRule QName
a Telescope
b QName
c PElims
d Term
e Type
f Bool
g) = (QName
-> Telescope
-> QName
-> PElims
-> Term
-> Type
-> Bool
-> RewriteRule)
-> QName
-> Telescope
-> QName
-> PElims
-> Term
-> Type
-> Bool
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' QName
-> Telescope
-> QName
-> PElims
-> Term
-> Type
-> Bool
-> RewriteRule
RewriteRule QName
a Telescope
b QName
c PElims
d Term
e Type
f Bool
g
value :: Int32 -> R RewriteRule
value = (QName
-> Telescope
-> QName
-> PElims
-> Term
-> Type
-> Bool
-> RewriteRule)
-> Int32
-> R (CoDomain
(QName
-> Telescope
-> QName
-> PElims
-> Term
-> Type
-> Bool
-> RewriteRule))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN QName
-> Telescope
-> QName
-> PElims
-> Term
-> Type
-> Bool
-> RewriteRule
RewriteRule
instance EmbPrj Projection where
icod_ :: Projection -> S Int32
icod_ (Projection Maybe QName
a QName
b Arg QName
c Int
d ProjLams
e) = (Maybe QName
-> QName -> Arg QName -> Int -> ProjLams -> Projection)
-> Maybe QName -> QName -> Arg QName -> Int -> ProjLams -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Maybe QName -> QName -> Arg QName -> Int -> ProjLams -> Projection
Projection Maybe QName
a QName
b Arg QName
c Int
d ProjLams
e
value :: Int32 -> R Projection
value = (Maybe QName
-> QName -> Arg QName -> Int -> ProjLams -> Projection)
-> Int32
-> R (CoDomain
(Maybe QName
-> QName -> Arg QName -> Int -> ProjLams -> Projection))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Maybe QName -> QName -> Arg QName -> Int -> ProjLams -> Projection
Projection
instance EmbPrj ProjLams where
icod_ :: ProjLams -> S Int32
icod_ (ProjLams [Arg ArgName]
a) = ([Arg ArgName] -> ProjLams) -> [Arg ArgName] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' [Arg ArgName] -> ProjLams
ProjLams [Arg ArgName]
a
value :: Int32 -> R ProjLams
value = ([Arg ArgName] -> ProjLams)
-> Int32 -> R (CoDomain ([Arg ArgName] -> ProjLams))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN [Arg ArgName] -> ProjLams
ProjLams
instance EmbPrj System where
icod_ :: System -> S Int32
icod_ (System Telescope
a [(Face, Term)]
b) = (Telescope -> [(Face, Term)] -> System)
-> Telescope -> [(Face, Term)] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Telescope -> [(Face, Term)] -> System
System Telescope
a [(Face, Term)]
b
value :: Int32 -> R System
value = (Telescope -> [(Face, Term)] -> System)
-> Int32 -> R (CoDomain (Telescope -> [(Face, Term)] -> System))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Telescope -> [(Face, Term)] -> System
System
instance EmbPrj ExtLamInfo where
icod_ :: ExtLamInfo -> S Int32
icod_ (ExtLamInfo ModuleName
a Bool
b Maybe System
c) = (ModuleName -> Bool -> Maybe System -> ExtLamInfo)
-> ModuleName -> Bool -> Maybe System -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' ModuleName -> Bool -> Maybe System -> ExtLamInfo
ExtLamInfo ModuleName
a Bool
b Maybe System
c
value :: Int32 -> R ExtLamInfo
value = (ModuleName -> Bool -> Maybe System -> ExtLamInfo)
-> Int32
-> R (CoDomain (ModuleName -> Bool -> Maybe System -> ExtLamInfo))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN ModuleName -> Bool -> Maybe System -> ExtLamInfo
ExtLamInfo
instance EmbPrj Polarity where
icod_ :: Polarity -> S Int32
icod_ Polarity
Covariant = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
icod_ Polarity
Contravariant = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
icod_ Polarity
Invariant = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
icod_ Polarity
Nonvariant = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
3
value :: Int32 -> R Polarity
value Int32
0 = Polarity -> R Polarity
forall (m :: * -> *) a. Monad m => a -> m a
return Polarity
Covariant
value Int32
1 = Polarity -> R Polarity
forall (m :: * -> *) a. Monad m => a -> m a
return Polarity
Contravariant
value Int32
2 = Polarity -> R Polarity
forall (m :: * -> *) a. Monad m => a -> m a
return Polarity
Invariant
value Int32
3 = Polarity -> R Polarity
forall (m :: * -> *) a. Monad m => a -> m a
return Polarity
Nonvariant
value Int32
_ = R Polarity
forall a. R a
malformed
instance EmbPrj IsForced where
icod_ :: IsForced -> S Int32
icod_ IsForced
Forced = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
icod_ IsForced
NotForced = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
value :: Int32 -> R IsForced
value Int32
0 = IsForced -> R IsForced
forall (m :: * -> *) a. Monad m => a -> m a
return IsForced
Forced
value Int32
1 = IsForced -> R IsForced
forall (m :: * -> *) a. Monad m => a -> m a
return IsForced
NotForced
value Int32
_ = R IsForced
forall a. R a
malformed
instance EmbPrj NumGeneralizableArgs where
icod_ :: NumGeneralizableArgs -> S Int32
icod_ NumGeneralizableArgs
NoGeneralizableArgs = NumGeneralizableArgs
-> Arrows (Domains NumGeneralizableArgs) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' NumGeneralizableArgs
NoGeneralizableArgs
icod_ (SomeGeneralizableArgs Int
a) = (Int -> NumGeneralizableArgs) -> Int -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Int -> NumGeneralizableArgs
SomeGeneralizableArgs Int
a
value :: Int32 -> R NumGeneralizableArgs
value = (Node -> R NumGeneralizableArgs) -> Int32 -> R NumGeneralizableArgs
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R NumGeneralizableArgs
valu where
valu :: Node -> R NumGeneralizableArgs
valu [] = NumGeneralizableArgs
-> Arrows
(Constant Int32 (Domains NumGeneralizableArgs))
(R (CoDomain NumGeneralizableArgs))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN NumGeneralizableArgs
NoGeneralizableArgs
valu [Int32
a] = (Int -> NumGeneralizableArgs) -> Int32 -> R NumGeneralizableArgs
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int -> NumGeneralizableArgs
SomeGeneralizableArgs Int32
a
valu Node
_ = R NumGeneralizableArgs
forall a. R a
malformed
instance EmbPrj DoGeneralize where
icod_ :: DoGeneralize -> S Int32
icod_ DoGeneralize
YesGeneralizeVar = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
icod_ DoGeneralize
YesGeneralizeMeta = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
icod_ DoGeneralize
NoGeneralize = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
value :: Int32 -> R DoGeneralize
value Int32
0 = DoGeneralize -> R DoGeneralize
forall (m :: * -> *) a. Monad m => a -> m a
return DoGeneralize
YesGeneralizeVar
value Int32
1 = DoGeneralize -> R DoGeneralize
forall (m :: * -> *) a. Monad m => a -> m a
return DoGeneralize
YesGeneralizeMeta
value Int32
2 = DoGeneralize -> R DoGeneralize
forall (m :: * -> *) a. Monad m => a -> m a
return DoGeneralize
NoGeneralize
value Int32
_ = R DoGeneralize
forall a. R a
malformed
instance EmbPrj Occurrence where
icod_ :: Occurrence -> S Int32
icod_ Occurrence
StrictPos = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
0
icod_ Occurrence
Mixed = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
1
icod_ Occurrence
Unused = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
2
icod_ Occurrence
GuardPos = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
3
icod_ Occurrence
JustPos = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
4
icod_ Occurrence
JustNeg = Int32 -> S Int32
forall (m :: * -> *) a. Monad m => a -> m a
return Int32
5
value :: Int32 -> R Occurrence
value Int32
0 = Occurrence -> R Occurrence
forall (m :: * -> *) a. Monad m => a -> m a
return Occurrence
StrictPos
value Int32
1 = Occurrence -> R Occurrence
forall (m :: * -> *) a. Monad m => a -> m a
return Occurrence
Mixed
value Int32
2 = Occurrence -> R Occurrence
forall (m :: * -> *) a. Monad m => a -> m a
return Occurrence
Unused
value Int32
3 = Occurrence -> R Occurrence
forall (m :: * -> *) a. Monad m => a -> m a
return Occurrence
GuardPos
value Int32
4 = Occurrence -> R Occurrence
forall (m :: * -> *) a. Monad m => a -> m a
return Occurrence
JustPos
value Int32
5 = Occurrence -> R Occurrence
forall (m :: * -> *) a. Monad m => a -> m a
return Occurrence
JustNeg
value Int32
_ = R Occurrence
forall a. R a
malformed
instance EmbPrj EtaEquality where
icod_ :: EtaEquality -> S Int32
icod_ (Specified HasEta
a) = Int32 -> (HasEta -> EtaEquality) -> HasEta -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 HasEta -> EtaEquality
Specified HasEta
a
icod_ (Inferred HasEta
a) = Int32 -> (HasEta -> EtaEquality) -> HasEta -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 HasEta -> EtaEquality
Inferred HasEta
a
value :: Int32 -> R EtaEquality
value = (Node -> R EtaEquality) -> Int32 -> R EtaEquality
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R EtaEquality
valu where
valu :: Node -> R EtaEquality
valu [Int32
0,Int32
a] = (HasEta -> EtaEquality) -> Int32 -> R EtaEquality
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN HasEta -> EtaEquality
Specified Int32
a
valu [Int32
1,Int32
a] = (HasEta -> EtaEquality) -> Int32 -> R EtaEquality
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN HasEta -> EtaEquality
Inferred Int32
a
valu Node
_ = R EtaEquality
forall a. R a
malformed
instance EmbPrj Defn where
icod_ :: Defn -> S Int32
icod_ (Axiom Bool
a) = Int32 -> (Bool -> Defn) -> Bool -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 Bool -> Defn
Axiom Bool
a
icod_ (Function [Clause]
a Maybe CompiledClauses
b Maybe SplitTree
s Maybe Compiled
t (Clause
_:[Clause]
_) FunctionInverse
c Maybe [QName]
d IsAbstract
e Delayed
f Maybe Projection
g Set FunctionFlag
h Maybe Bool
i Maybe ExtLamInfo
j Maybe QName
k) = S Int32
forall a. HasCallStack => a
__IMPOSSIBLE__
icod_ (Function [Clause]
a Maybe CompiledClauses
b Maybe SplitTree
s Maybe Compiled
t [] FunctionInverse
c Maybe [QName]
d IsAbstract
e Delayed
f Maybe Projection
g Set FunctionFlag
h Maybe Bool
i Maybe ExtLamInfo
j Maybe QName
k) =
Int32
-> ([Clause]
-> Maybe CompiledClauses
-> Maybe SplitTree
-> FunctionInverse
-> Maybe [QName]
-> IsAbstract
-> Delayed
-> Maybe Projection
-> Set FunctionFlag
-> Maybe Bool
-> Maybe ExtLamInfo
-> Maybe QName
-> Defn)
-> [Clause]
-> Maybe CompiledClauses
-> Maybe SplitTree
-> FunctionInverse
-> Maybe [QName]
-> IsAbstract
-> Delayed
-> Maybe Projection
-> Set FunctionFlag
-> Maybe Bool
-> Maybe ExtLamInfo
-> Maybe QName
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 (\ [Clause]
a Maybe CompiledClauses
b Maybe SplitTree
s -> [Clause]
-> Maybe CompiledClauses
-> Maybe SplitTree
-> Maybe Compiled
-> [Clause]
-> FunctionInverse
-> Maybe [QName]
-> IsAbstract
-> Delayed
-> Maybe Projection
-> Set FunctionFlag
-> Maybe Bool
-> Maybe ExtLamInfo
-> Maybe QName
-> Defn
Function [Clause]
a Maybe CompiledClauses
b Maybe SplitTree
s Maybe Compiled
t []) [Clause]
a Maybe CompiledClauses
b Maybe SplitTree
s FunctionInverse
c Maybe [QName]
d IsAbstract
e Delayed
f Maybe Projection
g Set FunctionFlag
h Maybe Bool
i Maybe ExtLamInfo
j Maybe QName
k
icod_ (Datatype Int
a Int
b Maybe Clause
c [QName]
d Sort' Term
e Maybe [QName]
f IsAbstract
g [QName]
h) = Int32
-> (Int
-> Int
-> Maybe Clause
-> [QName]
-> Sort' Term
-> Maybe [QName]
-> IsAbstract
-> [QName]
-> Defn)
-> Int
-> Int
-> Maybe Clause
-> [QName]
-> Sort' Term
-> Maybe [QName]
-> IsAbstract
-> [QName]
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 Int
-> Int
-> Maybe Clause
-> [QName]
-> Sort' Term
-> Maybe [QName]
-> IsAbstract
-> [QName]
-> Defn
Datatype Int
a Int
b Maybe Clause
c [QName]
d Sort' Term
e Maybe [QName]
f IsAbstract
g [QName]
h
icod_ (Record Int
a Maybe Clause
b ConHead
c Bool
d [Dom QName]
e Telescope
f Maybe [QName]
g EtaEquality
h PatternOrCopattern
i Maybe Induction
j IsAbstract
k CompKit
l) = Int32
-> (Int
-> Maybe Clause
-> ConHead
-> Bool
-> [Dom QName]
-> Telescope
-> Maybe [QName]
-> EtaEquality
-> PatternOrCopattern
-> Maybe Induction
-> IsAbstract
-> CompKit
-> Defn)
-> Int
-> Maybe Clause
-> ConHead
-> Bool
-> [Dom QName]
-> Telescope
-> Maybe [QName]
-> EtaEquality
-> PatternOrCopattern
-> Maybe Induction
-> IsAbstract
-> CompKit
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 Int
-> Maybe Clause
-> ConHead
-> Bool
-> [Dom QName]
-> Telescope
-> Maybe [QName]
-> EtaEquality
-> PatternOrCopattern
-> Maybe Induction
-> IsAbstract
-> CompKit
-> Defn
Record Int
a Maybe Clause
b ConHead
c Bool
d [Dom QName]
e Telescope
f Maybe [QName]
g EtaEquality
h PatternOrCopattern
i Maybe Induction
j IsAbstract
k CompKit
l
icod_ (Constructor Int
a Int
b ConHead
c QName
d IsAbstract
e Induction
f CompKit
g Maybe [QName]
h [IsForced]
i Maybe [Bool]
j) = Int32
-> (Int
-> Int
-> ConHead
-> QName
-> IsAbstract
-> Induction
-> CompKit
-> Maybe [QName]
-> [IsForced]
-> Maybe [Bool]
-> Defn)
-> Int
-> Int
-> ConHead
-> QName
-> IsAbstract
-> Induction
-> CompKit
-> Maybe [QName]
-> [IsForced]
-> Maybe [Bool]
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
4 Int
-> Int
-> ConHead
-> QName
-> IsAbstract
-> Induction
-> CompKit
-> Maybe [QName]
-> [IsForced]
-> Maybe [Bool]
-> Defn
Constructor Int
a Int
b ConHead
c QName
d IsAbstract
e Induction
f CompKit
g Maybe [QName]
h [IsForced]
i Maybe [Bool]
j
icod_ (Primitive IsAbstract
a ArgName
b [Clause]
c FunctionInverse
d Maybe CompiledClauses
e) = Int32
-> (IsAbstract
-> ArgName
-> [Clause]
-> FunctionInverse
-> Maybe CompiledClauses
-> Defn)
-> IsAbstract
-> ArgName
-> [Clause]
-> FunctionInverse
-> Maybe CompiledClauses
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
5 IsAbstract
-> ArgName
-> [Clause]
-> FunctionInverse
-> Maybe CompiledClauses
-> Defn
Primitive IsAbstract
a ArgName
b [Clause]
c FunctionInverse
d Maybe CompiledClauses
e
icod_ (PrimitiveSort ArgName
a Sort' Term
b) = Int32
-> (ArgName -> Sort' Term -> Defn)
-> ArgName
-> Sort' Term
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
6 ArgName -> Sort' Term -> Defn
PrimitiveSort ArgName
a Sort' Term
b
icod_ AbstractDefn{} = S Int32
forall a. HasCallStack => a
__IMPOSSIBLE__
icod_ Defn
GeneralizableVar = Int32 -> Defn -> Arrows (Domains Defn) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
7 Defn
GeneralizableVar
icod_ DataOrRecSig{} = S Int32
forall a. HasCallStack => a
__IMPOSSIBLE__
value :: Int32 -> R Defn
value = (Node -> R Defn) -> Int32 -> R Defn
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R Defn
valu where
valu :: Node -> R Defn
valu [Int32
0, Int32
a] = (Bool -> Defn) -> Int32 -> R Defn
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Bool -> Defn
Axiom Int32
a
valu [Int32
1, Int32
a, Int32
b, Int32
s, Int32
c, Int32
d, Int32
e, Int32
f, Int32
g, Int32
h, Int32
i, Int32
j, Int32
k] = ([Clause]
-> Maybe CompiledClauses
-> Maybe SplitTree
-> FunctionInverse
-> Maybe [QName]
-> IsAbstract
-> Delayed
-> Maybe Projection
-> Set FunctionFlag
-> Maybe Bool
-> Maybe ExtLamInfo
-> Maybe QName
-> Defn)
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> R Defn
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN (\ [Clause]
a Maybe CompiledClauses
b Maybe SplitTree
s -> [Clause]
-> Maybe CompiledClauses
-> Maybe SplitTree
-> Maybe Compiled
-> [Clause]
-> FunctionInverse
-> Maybe [QName]
-> IsAbstract
-> Delayed
-> Maybe Projection
-> Set FunctionFlag
-> Maybe Bool
-> Maybe ExtLamInfo
-> Maybe QName
-> Defn
Function [Clause]
a Maybe CompiledClauses
b Maybe SplitTree
s Maybe Compiled
forall a. Maybe a
Nothing []) Int32
a Int32
b Int32
s Int32
c Int32
d Int32
e Int32
f Int32
g Int32
h Int32
i Int32
j Int32
k
valu [Int32
2, Int32
a, Int32
b, Int32
c, Int32
d, Int32
e, Int32
f, Int32
g, Int32
h] = (Int
-> Int
-> Maybe Clause
-> [QName]
-> Sort' Term
-> Maybe [QName]
-> IsAbstract
-> [QName]
-> Defn)
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> R Defn
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int
-> Int
-> Maybe Clause
-> [QName]
-> Sort' Term
-> Maybe [QName]
-> IsAbstract
-> [QName]
-> Defn
Datatype Int32
a Int32
b Int32
c Int32
d Int32
e Int32
f Int32
g Int32
h
valu [Int32
3, Int32
a, Int32
b, Int32
c, Int32
d, Int32
e, Int32
f, Int32
g, Int32
h, Int32
i, Int32
j, Int32
k, Int32
l] = (Int
-> Maybe Clause
-> ConHead
-> Bool
-> [Dom QName]
-> Telescope
-> Maybe [QName]
-> EtaEquality
-> PatternOrCopattern
-> Maybe Induction
-> IsAbstract
-> CompKit
-> Defn)
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> R Defn
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int
-> Maybe Clause
-> ConHead
-> Bool
-> [Dom QName]
-> Telescope
-> Maybe [QName]
-> EtaEquality
-> PatternOrCopattern
-> Maybe Induction
-> IsAbstract
-> CompKit
-> Defn
Record Int32
a Int32
b Int32
c Int32
d Int32
e Int32
f Int32
g Int32
h Int32
i Int32
j Int32
k Int32
l
valu [Int32
4, Int32
a, Int32
b, Int32
c, Int32
d, Int32
e, Int32
f, Int32
g, Int32
h, Int32
i, Int32
j] = (Int
-> Int
-> ConHead
-> QName
-> IsAbstract
-> Induction
-> CompKit
-> Maybe [QName]
-> [IsForced]
-> Maybe [Bool]
-> Defn)
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> Int32
-> R Defn
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int
-> Int
-> ConHead
-> QName
-> IsAbstract
-> Induction
-> CompKit
-> Maybe [QName]
-> [IsForced]
-> Maybe [Bool]
-> Defn
Constructor Int32
a Int32
b Int32
c Int32
d Int32
e Int32
f Int32
g Int32
h Int32
i Int32
j
valu [Int32
5, Int32
a, Int32
b, Int32
c, Int32
d, Int32
e] = (IsAbstract
-> ArgName
-> [Clause]
-> FunctionInverse
-> Maybe CompiledClauses
-> Defn)
-> Int32 -> Int32 -> Int32 -> Int32 -> Int32 -> R Defn
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN IsAbstract
-> ArgName
-> [Clause]
-> FunctionInverse
-> Maybe CompiledClauses
-> Defn
Primitive Int32
a Int32
b Int32
c Int32
d Int32
e
valu [Int32
6, Int32
a, Int32
b] = (ArgName -> Sort' Term -> Defn) -> Int32 -> Int32 -> R Defn
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ArgName -> Sort' Term -> Defn
PrimitiveSort Int32
a Int32
b
valu [Int32
7] = Defn -> Arrows (Constant Int32 (Domains Defn)) (R (CoDomain Defn))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Defn
GeneralizableVar
valu Node
_ = R Defn
forall a. R a
malformed
instance EmbPrj LazySplit where
icod_ :: LazySplit -> S Int32
icod_ LazySplit
StrictSplit = LazySplit -> Arrows (Domains LazySplit) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' LazySplit
StrictSplit
icod_ LazySplit
LazySplit = Int32 -> LazySplit -> Arrows (Domains LazySplit) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 LazySplit
LazySplit
value :: Int32 -> R LazySplit
value = (Node -> R LazySplit) -> Int32 -> R LazySplit
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R LazySplit
forall a. (Eq a, Num a) => [a] -> R LazySplit
valu where
valu :: [a] -> R LazySplit
valu [] = LazySplit
-> Arrows
(Constant Int32 (Domains LazySplit)) (R (CoDomain LazySplit))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN LazySplit
StrictSplit
valu [a
0] = LazySplit
-> Arrows
(Constant Int32 (Domains LazySplit)) (R (CoDomain LazySplit))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN LazySplit
LazySplit
valu [a]
_ = R LazySplit
forall a. R a
malformed
instance EmbPrj SplitTag where
icod_ :: SplitTag -> S Int32
icod_ (SplitCon QName
c) = Int32 -> (QName -> SplitTag) -> QName -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 QName -> SplitTag
SplitCon QName
c
icod_ (SplitLit Literal
l) = Int32 -> (Literal -> SplitTag) -> Literal -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Literal -> SplitTag
SplitLit Literal
l
icod_ SplitTag
SplitCatchall = SplitTag -> Arrows (Domains SplitTag) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' SplitTag
SplitCatchall
value :: Int32 -> R SplitTag
value = (Node -> R SplitTag) -> Int32 -> R SplitTag
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R SplitTag
valu where
valu :: Node -> R SplitTag
valu [] = SplitTag
-> Arrows
(Constant Int32 (Domains SplitTag)) (R (CoDomain SplitTag))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN SplitTag
SplitCatchall
valu [Int32
0, Int32
c] = (QName -> SplitTag) -> Int32 -> R SplitTag
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN QName -> SplitTag
SplitCon Int32
c
valu [Int32
1, Int32
l] = (Literal -> SplitTag) -> Int32 -> R SplitTag
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Literal -> SplitTag
SplitLit Int32
l
valu Node
_ = R SplitTag
forall a. R a
malformed
instance EmbPrj a => EmbPrj (SplitTree' a) where
icod_ :: SplitTree' a -> S Int32
icod_ (SplittingDone Int
a) = (Int -> SplitTree' Any) -> Int -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Int -> SplitTree' Any
forall a. Int -> SplitTree' a
SplittingDone Int
a
icod_ (SplitAt Arg Int
a LazySplit
b SplitTrees' a
c) = Int32
-> (Arg Int -> LazySplit -> SplitTrees' a -> SplitTree' a)
-> Arg Int
-> LazySplit
-> SplitTrees' a
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 Arg Int -> LazySplit -> SplitTrees' a -> SplitTree' a
forall a. Arg Int -> LazySplit -> SplitTrees' a -> SplitTree' a
SplitAt Arg Int
a LazySplit
b SplitTrees' a
c
value :: Int32 -> R (SplitTree' a)
value = (Node -> R (SplitTree' a)) -> Int32 -> R (SplitTree' a)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (SplitTree' a)
forall a. EmbPrj a => Node -> R (SplitTree' a)
valu where
valu :: Node -> R (SplitTree' a)
valu [Int32
a] = (Int -> SplitTree' a) -> Int32 -> R (SplitTree' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int -> SplitTree' a
forall a. Int -> SplitTree' a
SplittingDone Int32
a
valu [Int32
0, Int32
a, Int32
b, Int32
c] = (Arg Int -> LazySplit -> SplitTrees' a -> SplitTree' a)
-> Int32 -> Int32 -> Int32 -> R (SplitTree' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Arg Int -> LazySplit -> SplitTrees' a -> SplitTree' a
forall a. Arg Int -> LazySplit -> SplitTrees' a -> SplitTree' a
SplitAt Int32
a Int32
b Int32
c
valu Node
_ = R (SplitTree' a)
forall a. R a
malformed
instance EmbPrj FunctionFlag where
icod_ :: FunctionFlag -> S Int32
icod_ FunctionFlag
FunStatic = Int32 -> FunctionFlag -> Arrows (Domains FunctionFlag) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 FunctionFlag
FunStatic
icod_ FunctionFlag
FunInline = Int32 -> FunctionFlag -> Arrows (Domains FunctionFlag) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 FunctionFlag
FunInline
icod_ FunctionFlag
FunMacro = Int32 -> FunctionFlag -> Arrows (Domains FunctionFlag) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 FunctionFlag
FunMacro
value :: Int32 -> R FunctionFlag
value = (Node -> R FunctionFlag) -> Int32 -> R FunctionFlag
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R FunctionFlag
forall a. (Eq a, Num a) => [a] -> R FunctionFlag
valu where
valu :: [a] -> R FunctionFlag
valu [a
0] = FunctionFlag
-> Arrows
(Constant Int32 (Domains FunctionFlag)) (R (CoDomain FunctionFlag))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN FunctionFlag
FunStatic
valu [a
1] = FunctionFlag
-> Arrows
(Constant Int32 (Domains FunctionFlag)) (R (CoDomain FunctionFlag))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN FunctionFlag
FunInline
valu [a
2] = FunctionFlag
-> Arrows
(Constant Int32 (Domains FunctionFlag)) (R (CoDomain FunctionFlag))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN FunctionFlag
FunMacro
valu [a]
_ = R FunctionFlag
forall a. R a
malformed
instance EmbPrj a => EmbPrj (WithArity a) where
icod_ :: WithArity a -> S Int32
icod_ (WithArity Int
a a
b) = (Int -> a -> WithArity a) -> Int -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Int -> a -> WithArity a
forall c. Int -> c -> WithArity c
WithArity Int
a a
b
value :: Int32 -> R (WithArity a)
value = (Int -> a -> WithArity a)
-> Int32 -> R (CoDomain (Int -> a -> WithArity a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Int -> a -> WithArity a
forall c. Int -> c -> WithArity c
WithArity
instance EmbPrj a => EmbPrj (Case a) where
icod_ :: Case a -> S Int32
icod_ (Branches Bool
a Map QName (WithArity a)
b Maybe (ConHead, WithArity a)
c Map Literal a
d Maybe a
e Maybe Bool
f Bool
g) = (Bool
-> Map QName (WithArity a)
-> Maybe (ConHead, WithArity a)
-> Map Literal a
-> Maybe a
-> Maybe Bool
-> Bool
-> Case a)
-> Bool
-> Map QName (WithArity a)
-> Maybe (ConHead, WithArity a)
-> Map Literal a
-> Maybe a
-> Maybe Bool
-> Bool
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Bool
-> Map QName (WithArity a)
-> Maybe (ConHead, WithArity a)
-> Map Literal a
-> Maybe a
-> Maybe Bool
-> Bool
-> Case a
forall c.
Bool
-> Map QName (WithArity c)
-> Maybe (ConHead, WithArity c)
-> Map Literal c
-> Maybe c
-> Maybe Bool
-> Bool
-> Case c
Branches Bool
a Map QName (WithArity a)
b Maybe (ConHead, WithArity a)
c Map Literal a
d Maybe a
e Maybe Bool
f Bool
g
value :: Int32 -> R (Case a)
value = (Bool
-> Map QName (WithArity a)
-> Maybe (ConHead, WithArity a)
-> Map Literal a
-> Maybe a
-> Maybe Bool
-> Bool
-> Case a)
-> Int32
-> R (CoDomain
(Bool
-> Map QName (WithArity a)
-> Maybe (ConHead, WithArity a)
-> Map Literal a
-> Maybe a
-> Maybe Bool
-> Bool
-> Case a))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Bool
-> Map QName (WithArity a)
-> Maybe (ConHead, WithArity a)
-> Map Literal a
-> Maybe a
-> Maybe Bool
-> Bool
-> Case a
forall c.
Bool
-> Map QName (WithArity c)
-> Maybe (ConHead, WithArity c)
-> Map Literal c
-> Maybe c
-> Maybe Bool
-> Bool
-> Case c
Branches
instance EmbPrj CompiledClauses where
icod_ :: CompiledClauses -> S Int32
icod_ (Fail [Arg ArgName]
a) = ([Arg ArgName] -> CompiledClauses' Any) -> [Arg ArgName] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' [Arg ArgName] -> CompiledClauses' Any
forall a. [Arg ArgName] -> CompiledClauses' a
Fail [Arg ArgName]
a
icod_ (Done [Arg ArgName]
a Term
b) = ([Arg ArgName] -> Term -> CompiledClauses)
-> [Arg ArgName] -> Term -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' [Arg ArgName] -> Term -> CompiledClauses
forall a. [Arg ArgName] -> a -> CompiledClauses' a
Done [Arg ArgName]
a (Term -> Term
forall a. KillRange a => KillRangeT a
P.killRange Term
b)
icod_ (Case Arg Int
a Case CompiledClauses
b) = Int32
-> (Arg Int -> Case CompiledClauses -> CompiledClauses)
-> Arg Int
-> Case CompiledClauses
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 Arg Int -> Case CompiledClauses -> CompiledClauses
forall a.
Arg Int -> Case (CompiledClauses' a) -> CompiledClauses' a
Case Arg Int
a Case CompiledClauses
b
value :: Int32 -> R CompiledClauses
value = (Node -> R CompiledClauses) -> Int32 -> R CompiledClauses
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R CompiledClauses
forall a.
(EmbPrj a, EmbPrj (CompiledClauses' a)) =>
Node -> R (CompiledClauses' a)
valu where
valu :: Node -> R (CompiledClauses' a)
valu [Int32
a] = ([Arg ArgName] -> CompiledClauses' a)
-> Int32 -> R (CompiledClauses' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN [Arg ArgName] -> CompiledClauses' a
forall a. [Arg ArgName] -> CompiledClauses' a
Fail Int32
a
valu [Int32
a, Int32
b] = ([Arg ArgName] -> a -> CompiledClauses' a)
-> Int32 -> Int32 -> R (CompiledClauses' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN [Arg ArgName] -> a -> CompiledClauses' a
forall a. [Arg ArgName] -> a -> CompiledClauses' a
Done Int32
a Int32
b
valu [Int32
2, Int32
a, Int32
b] = (Arg Int -> Case (CompiledClauses' a) -> CompiledClauses' a)
-> Int32 -> Int32 -> R (CompiledClauses' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Arg Int -> Case (CompiledClauses' a) -> CompiledClauses' a
forall a.
Arg Int -> Case (CompiledClauses' a) -> CompiledClauses' a
Case Int32
a Int32
b
valu Node
_ = R (CompiledClauses' a)
forall a. R a
malformed
instance EmbPrj a => EmbPrj (FunctionInverse' a) where
icod_ :: FunctionInverse' a -> S Int32
icod_ FunctionInverse' a
NotInjective = FunctionInverse' Any
-> Arrows (Domains (FunctionInverse' Any)) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' FunctionInverse' Any
forall c. FunctionInverse' c
NotInjective
icod_ (Inverse InversionMap a
a) = (InversionMap a -> FunctionInverse' a) -> InversionMap a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' InversionMap a -> FunctionInverse' a
forall c. InversionMap c -> FunctionInverse' c
Inverse InversionMap a
a
value :: Int32 -> R (FunctionInverse' a)
value = (Node -> R (FunctionInverse' a)) -> Int32 -> R (FunctionInverse' a)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (FunctionInverse' a)
forall c. EmbPrj [c] => Node -> R (FunctionInverse' c)
valu where
valu :: Node -> R (FunctionInverse' c)
valu [] = FunctionInverse' c
-> Arrows
(Constant Int32 (Domains (FunctionInverse' c)))
(R (CoDomain (FunctionInverse' c)))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN FunctionInverse' c
forall c. FunctionInverse' c
NotInjective
valu [Int32
a] = (InversionMap c -> FunctionInverse' c)
-> Int32 -> R (FunctionInverse' c)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN InversionMap c -> FunctionInverse' c
forall c. InversionMap c -> FunctionInverse' c
Inverse Int32
a
valu Node
_ = R (FunctionInverse' c)
forall a. R a
malformed
instance EmbPrj TermHead where
icod_ :: TermHead -> S Int32
icod_ TermHead
SortHead = TermHead -> Arrows (Domains TermHead) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' TermHead
SortHead
icod_ TermHead
PiHead = Int32 -> TermHead -> Arrows (Domains TermHead) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 TermHead
PiHead
icod_ (ConsHead QName
a) = Int32 -> (QName -> TermHead) -> QName -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 QName -> TermHead
ConsHead QName
a
icod_ (VarHead Int
a) = Int32 -> (Int -> TermHead) -> Int -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 Int -> TermHead
VarHead Int
a
icod_ TermHead
UnknownHead = Int32 -> TermHead -> Arrows (Domains TermHead) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
4 TermHead
UnknownHead
value :: Int32 -> R TermHead
value = (Node -> R TermHead) -> Int32 -> R TermHead
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R TermHead
valu where
valu :: Node -> R TermHead
valu [] = TermHead
-> Arrows
(Constant Int32 (Domains TermHead)) (R (CoDomain TermHead))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN TermHead
SortHead
valu [Int32
1] = TermHead
-> Arrows
(Constant Int32 (Domains TermHead)) (R (CoDomain TermHead))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN TermHead
PiHead
valu [Int32
2, Int32
a] = (QName -> TermHead) -> Int32 -> R TermHead
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN QName -> TermHead
ConsHead Int32
a
valu [Int32
3, Int32
a] = (Int -> TermHead) -> Int32 -> R TermHead
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int -> TermHead
VarHead Int32
a
valu [Int32
4] = TermHead
-> Arrows
(Constant Int32 (Domains TermHead)) (R (CoDomain TermHead))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN TermHead
UnknownHead
valu Node
_ = R TermHead
forall a. R a
malformed
instance EmbPrj I.Clause where
icod_ :: Clause -> S Int32
icod_ (Clause Range
a Range
b Telescope
c NAPs
d Maybe Term
e Maybe (Arg Type)
f Bool
g Maybe Bool
h Maybe Bool
i Maybe Bool
j ExpandedEllipsis
k) = (Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Clause)
-> Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Clause
Clause Range
a Range
b Telescope
c NAPs
d Maybe Term
e Maybe (Arg Type)
f Bool
g Maybe Bool
h Maybe Bool
i Maybe Bool
j ExpandedEllipsis
k
value :: Int32 -> R Clause
value = (Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Clause)
-> Int32
-> R (CoDomain
(Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Clause))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Clause
Clause
instance EmbPrj I.ConPatternInfo where
icod_ :: ConPatternInfo -> S Int32
icod_ (ConPatternInfo PatternInfo
a Bool
b Bool
c Maybe (Arg Type)
d Bool
e) = (PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo)
-> PatternInfo
-> Bool
-> Bool
-> Maybe (Arg Type)
-> Bool
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo
ConPatternInfo PatternInfo
a Bool
b Bool
c Maybe (Arg Type)
d Bool
e
value :: Int32 -> R ConPatternInfo
value = (PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo)
-> Int32
-> R (CoDomain
(PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo
ConPatternInfo
instance EmbPrj I.DBPatVar where
icod_ :: DBPatVar -> S Int32
icod_ (DBPatVar ArgName
a Int
b) = (ArgName -> Int -> DBPatVar) -> ArgName -> Int -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' ArgName -> Int -> DBPatVar
DBPatVar ArgName
a Int
b
value :: Int32 -> R DBPatVar
value = (ArgName -> Int -> DBPatVar)
-> Int32 -> R (CoDomain (ArgName -> Int -> DBPatVar))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN ArgName -> Int -> DBPatVar
DBPatVar
instance EmbPrj I.PatternInfo where
icod_ :: PatternInfo -> S Int32
icod_ (PatternInfo PatOrigin
a [Name]
b) = (PatOrigin -> [Name] -> PatternInfo)
-> PatOrigin -> [Name] -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' PatOrigin -> [Name] -> PatternInfo
PatternInfo PatOrigin
a [Name]
b
value :: Int32 -> R PatternInfo
value = (PatOrigin -> [Name] -> PatternInfo)
-> Int32 -> R (CoDomain (PatOrigin -> [Name] -> PatternInfo))
forall t.
(VALU t (IsBase t), All EmbPrj (CoDomain t : Domains t)) =>
t -> Int32 -> R (CoDomain t)
valueN PatOrigin -> [Name] -> PatternInfo
PatternInfo
instance EmbPrj I.PatOrigin where
icod_ :: PatOrigin -> S Int32
icod_ PatOrigin
PatOSystem = PatOrigin -> Arrows (Domains PatOrigin) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' PatOrigin
PatOSystem
icod_ PatOrigin
PatOSplit = Int32 -> PatOrigin -> Arrows (Domains PatOrigin) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 PatOrigin
PatOSplit
icod_ (PatOVar Name
a) = Int32 -> (Name -> PatOrigin) -> Name -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 Name -> PatOrigin
PatOVar Name
a
icod_ PatOrigin
PatODot = Int32 -> PatOrigin -> Arrows (Domains PatOrigin) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 PatOrigin
PatODot
icod_ PatOrigin
PatOWild = Int32 -> PatOrigin -> Arrows (Domains PatOrigin) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
4 PatOrigin
PatOWild
icod_ PatOrigin
PatOCon = Int32 -> PatOrigin -> Arrows (Domains PatOrigin) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
5 PatOrigin
PatOCon
icod_ PatOrigin
PatORec = Int32 -> PatOrigin -> Arrows (Domains PatOrigin) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
6 PatOrigin
PatORec
icod_ PatOrigin
PatOLit = Int32 -> PatOrigin -> Arrows (Domains PatOrigin) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
7 PatOrigin
PatOLit
icod_ PatOrigin
PatOAbsurd = Int32 -> PatOrigin -> Arrows (Domains PatOrigin) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
8 PatOrigin
PatOAbsurd
value :: Int32 -> R PatOrigin
value = (Node -> R PatOrigin) -> Int32 -> R PatOrigin
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R PatOrigin
valu where
valu :: Node -> R PatOrigin
valu [] = PatOrigin
-> Arrows
(Constant Int32 (Domains PatOrigin)) (R (CoDomain PatOrigin))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatOrigin
PatOSystem
valu [Int32
1] = PatOrigin
-> Arrows
(Constant Int32 (Domains PatOrigin)) (R (CoDomain PatOrigin))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatOrigin
PatOSplit
valu [Int32
2, Int32
a] = (Name -> PatOrigin) -> Int32 -> R PatOrigin
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Name -> PatOrigin
PatOVar Int32
a
valu [Int32
3] = PatOrigin
-> Arrows
(Constant Int32 (Domains PatOrigin)) (R (CoDomain PatOrigin))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatOrigin
PatODot
valu [Int32
4] = PatOrigin
-> Arrows
(Constant Int32 (Domains PatOrigin)) (R (CoDomain PatOrigin))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatOrigin
PatOWild
valu [Int32
5] = PatOrigin
-> Arrows
(Constant Int32 (Domains PatOrigin)) (R (CoDomain PatOrigin))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatOrigin
PatOCon
valu [Int32
6] = PatOrigin
-> Arrows
(Constant Int32 (Domains PatOrigin)) (R (CoDomain PatOrigin))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatOrigin
PatORec
valu [Int32
7] = PatOrigin
-> Arrows
(Constant Int32 (Domains PatOrigin)) (R (CoDomain PatOrigin))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatOrigin
PatOLit
valu [Int32
8] = PatOrigin
-> Arrows
(Constant Int32 (Domains PatOrigin)) (R (CoDomain PatOrigin))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatOrigin
PatOAbsurd
valu Node
_ = R PatOrigin
forall a. R a
malformed
instance EmbPrj a => EmbPrj (I.Pattern' a) where
icod_ :: Pattern' a -> S Int32
icod_ (VarP PatternInfo
a a
b ) = Int32
-> (PatternInfo -> a -> Pattern' a) -> PatternInfo -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
0 PatternInfo -> a -> Pattern' a
forall x. PatternInfo -> x -> Pattern' x
VarP PatternInfo
a a
b
icod_ (ConP ConHead
a ConPatternInfo
b [NamedArg (Pattern' a)]
c) = Int32
-> (ConHead
-> ConPatternInfo -> [NamedArg (Pattern' a)] -> Pattern' a)
-> ConHead
-> ConPatternInfo
-> [NamedArg (Pattern' a)]
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 ConHead -> ConPatternInfo -> [NamedArg (Pattern' a)] -> Pattern' a
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
a ConPatternInfo
b [NamedArg (Pattern' a)]
c
icod_ (LitP PatternInfo
a Literal
b ) = Int32
-> (PatternInfo -> Literal -> Pattern' Any)
-> PatternInfo
-> Literal
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 PatternInfo -> Literal -> Pattern' Any
forall x. PatternInfo -> Literal -> Pattern' x
LitP PatternInfo
a Literal
b
icod_ (DotP PatternInfo
a Term
b ) = Int32
-> (PatternInfo -> Term -> Pattern' Any)
-> PatternInfo
-> Term
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 PatternInfo -> Term -> Pattern' Any
forall x. PatternInfo -> Term -> Pattern' x
DotP PatternInfo
a Term
b
icod_ (ProjP ProjOrigin
a QName
b ) = Int32
-> (ProjOrigin -> QName -> Pattern' Any)
-> ProjOrigin
-> QName
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
4 ProjOrigin -> QName -> Pattern' Any
forall x. ProjOrigin -> QName -> Pattern' x
ProjP ProjOrigin
a QName
b
icod_ (IApplyP PatternInfo
a Term
b Term
c a
d) = Int32
-> (PatternInfo -> Term -> Term -> a -> Pattern' a)
-> PatternInfo
-> Term
-> Term
-> a
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
5 PatternInfo -> Term -> Term -> a -> Pattern' a
forall x. PatternInfo -> Term -> Term -> x -> Pattern' x
IApplyP PatternInfo
a Term
b Term
c a
d
icod_ (DefP PatternInfo
a QName
b [NamedArg (Pattern' a)]
c) = Int32
-> (PatternInfo -> QName -> [NamedArg (Pattern' a)] -> Pattern' a)
-> PatternInfo
-> QName
-> [NamedArg (Pattern' a)]
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
6 PatternInfo -> QName -> [NamedArg (Pattern' a)] -> Pattern' a
forall x.
PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
DefP PatternInfo
a QName
b [NamedArg (Pattern' a)]
c
value :: Int32 -> R (Pattern' a)
value = (Node -> R (Pattern' a)) -> Int32 -> R (Pattern' a)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (Pattern' a)
forall x. EmbPrj x => Node -> R (Pattern' x)
valu where
valu :: Node -> R (Pattern' x)
valu [Int32
0, Int32
a, Int32
b] = (PatternInfo -> x -> Pattern' x)
-> Int32 -> Int32 -> R (Pattern' x)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatternInfo -> x -> Pattern' x
forall x. PatternInfo -> x -> Pattern' x
VarP Int32
a Int32
b
valu [Int32
1, Int32
a, Int32
b, Int32
c] = (ConHead
-> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x)
-> Int32 -> Int32 -> Int32 -> R (Pattern' x)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP Int32
a Int32
b Int32
c
valu [Int32
2, Int32
a, Int32
b] = (PatternInfo -> Literal -> Pattern' x)
-> Int32 -> Int32 -> R (Pattern' x)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatternInfo -> Literal -> Pattern' x
forall x. PatternInfo -> Literal -> Pattern' x
LitP Int32
a Int32
b
valu [Int32
3, Int32
a, Int32
b] = (PatternInfo -> Term -> Pattern' x)
-> Int32 -> Int32 -> R (Pattern' x)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatternInfo -> Term -> Pattern' x
forall x. PatternInfo -> Term -> Pattern' x
DotP Int32
a Int32
b
valu [Int32
4, Int32
a, Int32
b] = (ProjOrigin -> QName -> Pattern' x)
-> Int32 -> Int32 -> R (Pattern' x)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN ProjOrigin -> QName -> Pattern' x
forall x. ProjOrigin -> QName -> Pattern' x
ProjP Int32
a Int32
b
valu [Int32
5, Int32
a, Int32
b, Int32
c, Int32
d] = (PatternInfo -> Term -> Term -> x -> Pattern' x)
-> Int32 -> Int32 -> Int32 -> Int32 -> R (Pattern' x)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatternInfo -> Term -> Term -> x -> Pattern' x
forall x. PatternInfo -> Term -> Term -> x -> Pattern' x
IApplyP Int32
a Int32
b Int32
c Int32
d
valu [Int32
6, Int32
a, Int32
b, Int32
c] = (PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x)
-> Int32 -> Int32 -> Int32 -> R (Pattern' x)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
forall x.
PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
DefP Int32
a Int32
b Int32
c
valu Node
_ = R (Pattern' x)
forall a. R a
malformed
instance EmbPrj a => EmbPrj (Builtin a) where
icod_ :: Builtin a -> S Int32
icod_ (Prim a
a) = (a -> Builtin a) -> a -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' a -> Builtin a
forall pf. pf -> Builtin pf
Prim a
a
icod_ (Builtin Term
a) = Int32 -> (Term -> Builtin Any) -> Term -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Term -> Builtin Any
forall pf. Term -> Builtin pf
Builtin Term
a
value :: Int32 -> R (Builtin a)
value = (Node -> R (Builtin a)) -> Int32 -> R (Builtin a)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (Builtin a)
forall pf. EmbPrj pf => Node -> R (Builtin pf)
valu where
valu :: Node -> R (Builtin pf)
valu [Int32
a] = (pf -> Builtin pf) -> Int32 -> R (Builtin pf)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN pf -> Builtin pf
forall pf. pf -> Builtin pf
Prim Int32
a
valu [Int32
1, Int32
a] = (Term -> Builtin pf) -> Int32 -> R (Builtin pf)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Term -> Builtin pf
forall pf. Term -> Builtin pf
Builtin Int32
a
valu Node
_ = R (Builtin pf)
forall a. R a
malformed
instance EmbPrj a => EmbPrj (Substitution' a) where
icod_ :: Substitution' a -> S Int32
icod_ Substitution' a
IdS = Substitution' Any -> Arrows (Domains (Substitution' Any)) (S Int32)
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
t -> Arrows (Domains t) (S Int32)
icodeN' Substitution' Any
forall a. Substitution' a
IdS
icod_ (EmptyS Impossible
a) = Int32 -> (Impossible -> Substitution' Any) -> Impossible -> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
1 Impossible -> Substitution' Any
forall a. Impossible -> Substitution' a
EmptyS Impossible
a
icod_ (a
a :# Substitution' a
b) = Int32
-> (a -> Substitution' a -> Substitution' a)
-> a
-> Substitution' a
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
2 a -> Substitution' a -> Substitution' a
forall a. a -> Substitution' a -> Substitution' a
(:#) a
a Substitution' a
b
icod_ (Strengthen Impossible
a Substitution' a
b) = Int32
-> (Impossible -> Substitution' a -> Substitution' a)
-> Impossible
-> Substitution' a
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
3 Impossible -> Substitution' a -> Substitution' a
forall a. Impossible -> Substitution' a -> Substitution' a
Strengthen Impossible
a Substitution' a
b
icod_ (Wk Int
a Substitution' a
b) = Int32
-> (Int -> Substitution' a -> Substitution' a)
-> Int
-> Substitution' a
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
4 Int -> Substitution' a -> Substitution' a
forall a. Int -> Substitution' a -> Substitution' a
Wk Int
a Substitution' a
b
icod_ (Lift Int
a Substitution' a
b) = Int32
-> (Int -> Substitution' a -> Substitution' a)
-> Int
-> Substitution' a
-> S Int32
forall t.
(ICODE t (IsBase t), Currying (Domains t) (S Int32),
All EmbPrj (Domains t)) =>
Int32 -> t -> Arrows (Domains t) (S Int32)
icodeN Int32
5 Int -> Substitution' a -> Substitution' a
forall a. Int -> Substitution' a -> Substitution' a
Lift Int
a Substitution' a
b
value :: Int32 -> R (Substitution' a)
value = (Node -> R (Substitution' a)) -> Int32 -> R (Substitution' a)
forall a. EmbPrj a => (Node -> R a) -> Int32 -> R a
vcase Node -> R (Substitution' a)
forall a. EmbPrj a => Node -> R (Substitution' a)
valu where
valu :: Node -> R (Substitution' a)
valu [] = Substitution' a
-> Arrows
(Constant Int32 (Domains (Substitution' a)))
(R (CoDomain (Substitution' a)))
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Substitution' a
forall a. Substitution' a
IdS
valu [Int32
1, Int32
a] = (Impossible -> Substitution' a) -> Int32 -> R (Substitution' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Impossible -> Substitution' a
forall a. Impossible -> Substitution' a
EmptyS Int32
a
valu [Int32
2, Int32
a, Int32
b] = (a -> Substitution' a -> Substitution' a)
-> Int32 -> Int32 -> R (Substitution' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN a -> Substitution' a -> Substitution' a
forall a. a -> Substitution' a -> Substitution' a
(:#) Int32
a Int32
b
valu [Int32
3, Int32
a, Int32
b] = (Impossible -> Substitution' a -> Substitution' a)
-> Int32 -> Int32 -> R (Substitution' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Impossible -> Substitution' a -> Substitution' a
forall a. Impossible -> Substitution' a -> Substitution' a
Strengthen Int32
a Int32
b
valu [Int32
4, Int32
a, Int32
b] = (Int -> Substitution' a -> Substitution' a)
-> Int32 -> Int32 -> R (Substitution' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int -> Substitution' a -> Substitution' a
forall a. Int -> Substitution' a -> Substitution' a
Wk Int32
a Int32
b
valu [Int32
5, Int32
a, Int32
b] = (Int -> Substitution' a -> Substitution' a)
-> Int32 -> Int32 -> R (Substitution' a)
forall t.
(VALU t (IsBase t),
Currying (Constant Int32 (Domains t)) (R (CoDomain t)),
All EmbPrj (Domains t)) =>
t -> Arrows (Constant Int32 (Domains t)) (R (CoDomain t))
valuN Int -> Substitution' a -> Substitution' a
forall a. Int -> Substitution' a -> Substitution' a
Lift Int32
a Int32
b
valu Node
_ = R (Substitution' a)
forall a. R a
malformed