module ChainRule where import Sets import Functor import Logic.ChainReasoning.Poly as CR import Isomorphism import Derivative open Derivative open Sets open Functor open Semantics open Isomorphism module Chain = CR _==_ (\x -> refl{x = x}) (\x y z -> trans{x = x}{y}{z}) open Chain chain-rule : (F G : U)(X : Set) -> ⟦ ∂ (F [ G ]) ⟧ X ≅ ⟦ ∂ F [ G ] × ∂ G ⟧ X chain-rule F G X = iso (i F) (j F) (ji F) (ij F) where i : (F : U) -> ⟦ ∂ (F [ G ]) ⟧ X -> ⟦ ∂ F [ G ] × ∂ G ⟧ X i (K A) () i Id x = < <> , x > i (F₁ + F₂) (inl c) = (inl <×> id) (i F₁ c) i (F₁ + F₂) (inr c) = (inr <×> id) (i F₂ c) i (F₁ × F₂) (inl < c , f₂ >) = (inl ∘ <∙, f₂ > <×> id) (i F₁ c) i (F₁ × F₂) (inr < f₁ , c >) = (inr ∘ < f₁ ,∙> <×> id) (i F₂ c) j : (F : U) -> ⟦ ∂ F [ G ] × ∂ G ⟧ X -> ⟦ ∂ (F [ G ]) ⟧ X j (K A) < () , _ > j Id < <> , x > = x j (F₁ + F₂) < inl x , y > = inl (j F₁ < x , y >) j (F₁ + F₂) < inr x , y > = inr (j F₂ < x , y >) j (F₁ × F₂) < inl < x , y > , z > = inl < j F₁ < x , z > , y > j (F₁ × F₂) < inr < x , y > , z > = inr < x , j F₂ < y , z > > ij : (F : U)(x : _) -> i F (j F x) == x ij (K A) < () , _ > ij Id < <> , x > = refl ij (F₁ + F₂) < lx@(inl x) , y > = subst (\ ∙ -> (inl <×> id) ∙ == < lx , y >) (ij F₁ < x , y >) refl ij (F₁ + F₂) < rx@(inr x) , y > = subst (\ ∙ -> (inr <×> id) ∙ == < rx , y >) (ij F₂ < x , y >) refl ij (F₁ × F₂) < xy@(inl < x , y >) , z > = subst (\ ∙ -> (inl ∘ <∙, y > <×> id) ∙ == < xy , z >) (ij F₁ < x , z >) refl ij (F₁ × F₂) < xy@(inr < x , y >) , z > = subst (\ ∙ -> (inr ∘ < x ,∙> <×> id) ∙ == < xy , z >) (ij F₂ < y , z >) refl ji : (F : U)(y : _) -> j F (i F y) == y ji (K A) () ji Id x = refl ji (F₁ + F₂) (inl c) = chain> j (F₁ + F₂) ((inl <×> id) (i F₁ c)) === inl (j F₁ _) by cong (j (F₁ + F₂) ∘ (inl <×> id)) (η-[×] (i F₁ c)) === inl (j F₁ (i F₁ c)) by cong (inl ∘ j F₁) (sym $ η-[×] (i F₁ c)) === inl c by cong inl (ji F₁ c) ji (F₁ + F₂) rc @ (inr c) = subst (\ ∙ -> j (F₁ + F₂) ((inr <×> id) ∙) == rc) (η-[×] (i F₂ c)) $ subst (\ ∙ -> inr (j F₂ ∙) == rc) (sym $ η-[×] (i F₂ c)) $ subst (\ ∙ -> inr ∙ == rc) (ji F₂ c) refl ji (F₁ × F₂) l @ (inl < c , f₂ >) = subst (\ ∙ -> j (F₁ × F₂) ((inl ∘ <∙, f₂ > <×> id) ∙) == l) (η-[×] (i F₁ c)) $ subst (\ ∙ -> inl < j F₁ ∙ , f₂ > == l) (sym $ η-[×] (i F₁ c)) $ subst (\ ∙ -> inl < ∙ , f₂ > == l) (ji F₁ c) refl ji (F₁ × F₂) r @ (inr < f₁ , c >) = subst (\ ∙ -> j (F₁ × F₂) ((inr ∘ < f₁ ,∙> <×> id) ∙) == r) (η-[×] (i F₂ c)) $ subst (\ ∙ -> inr < f₁ , j F₂ ∙ > == r) (sym $ η-[×] (i F₂ c)) $ subst (\ ∙ -> inr < f₁ , ∙ > == r) (ji F₂ c) refl