
wumpus-core Guide

Stephen Tetley

August 31, 2010

1 About wumpus-core

wumpus-core is a Haskell library for generating 2D vector pictures. It was writ-
ten with portability as a priority, so it has no dependencies on foreign C libraries.
Output to PostScript and SVG (Scalable Vector Graphics) is supported.

wumpus-core is rather primitive, the basic drawing objects are paths and
text labels. A second library wumpus-basic contains code for higher level draw-
ing but it is still missing main functionalities e.g. shapes, arrowheads.

Although wumpus-core is heavily inspired by PostScript it avoids PostScript’s
notion of an (implicit) current point and the movements lineto, moveto etc.,
instead wumpus-core aims for a more coordinate free style.

2 Exposed modules

wumpus-core exports the following modules:

Wumpus.Core. Top-level import module, re-exports the exposed modules. Ex-
ports as opaque some of the internal data types, where the export is neces-
sary for writing type signatures to user functions but access to the objects
themselves is hidden by smart constructors.

Wumpus.Core.AffineTrans. The standard affine transformations (scaling, ro-
tation, translation) implemented as type classes, with a of derived op-
erations - reflections about the X or Y axes, rotations through common
angles.

Wumpus.Core.BoundingBox. Data type representing bounding boxes and oper-
ations on them. This module is potentially important for defining higher-
level graphics objects (arrowheads and the like).

Wumpus.Core.Colour. Colour types (RGB, grayscale and HSB) and conversion
between them. Some named colours, which should be hidden or import
qualified if a more extensive package of colours (e.g. the named SVG
colours) is used. RGB is the default format, where black is (0.0, 0.0,

0.0), and white is (1.0, 1.0, 1.0).

1

Wumpus.Core.FontSize. Various calculations for font size metrics. Generally
not useful to a user but exposed so that variations of the standard Label
type are possible.

Wumpus.Core.Geometry. Usual types an operations from affine geometry - points,
vectors and frames. The Pointwise type class which is essential for defin-
ing transformable drawable types.

Wumpus.Core.GraphicsState. Data types modelling the attributes of PostScript’s
graphics state (stroke style, dash pattern, etc.). Note wumpus-core anno-
tates primitives - paths, text labels - with their rendering style. PostScript
has a mutable graphics state, changing via inheritance how the curent ob-
ject is drawn.

Wumpus.Core.OutputPostScript. Functions to write PostScript or encapsu-
lated PostScript files.

Wumpus.Core.OutputSVG. Functions to write SVG files.

Wumpus.Core.Picture. Operations to build pictures - paths and labels within
an affine frame. Type classes overloading convenience constructors for
building paths, labels, ellipses... The constructors are convenient in that
attributes - colour, line width, etc. - may be specified or not. The tech-
nique is due to Iavor S. Diatchki’s XML-Light.

Wumpus.Core.PtSize. Text size calculations in Core.FontSize use points (i.e.
1/72 of an inch). The PtSize module is a numeric type to represent them.

Wumpus.Core.TextEncoder. Types for handling non-ASCII character codes.
This module is perhaps under-cooked although it appears adequate for
Latin-1.

Wumpus.Core.TextLatin1. A instance of the TextEncoder type for mapping
Latin 1 characters to the PostScript and SVG escape characters.

Wumpus.Core.VersionNumber. Current version number of wumpus-core .

Wumpus.Core.WumpusTypes. This module collects internal types for Pictures,
Paths etc. and presents them as opaque types - i.e. their constructors are
hidden.

3 Drawing model

wumpus-core has two main drawable primitives paths and text labels, ellipses
are also a primitive although this is a concession to efficiency when drawing
dots (which would otherwise require 4 to 8 Bezier arcs to describe). Paths are
made from straight sections or Bezier curves, they can be open and stroked to
produce a line; or closed and stroked, filled or clipped. Labels represent a single
horizontal line of text - multiple lines must be composed from multiple labels.

2

(100,100)(0,100)

(100,0)(0,0)

Figure 1: The world frame, with origin at the bottom left.

Primitives are attributed with drawing styles - font name and size for labels;
line width, colour, etc. for paths - and place within a picture. The function
frame lifts a primitive to a picture within the standard affine frame (the standard
frame has origin at (0,0) and unit bases for the X and Y axes). The function
frameMulti places one or more primitives in a frame - this will produce more
efficient PostScript and should be preferred for creating scatter-plots and the
like.

wumpus-core uses the same picture frame as PostScript with the origin at
the bottom left, see Figure 1. This contrasts to SVG where the origin at the top-
left. When wumpus-core generates SVG, the whole picture is produced within
a matrix transformation [1.0, 0.0, 0.0, -1.0, 0.0, 0.0] that changes the picture
to use PostScript coordinates. This has the side-effect that text is otherwise
drawn upside down, so wumpus-core adds a rectifying transform to each text
element.

Once labels and paths are assembled as a Picture they are transformable
with the usual affine transformations (scaling, rotation, translation).

Once assembled into pictures graphics properties (e.g. colour) are opaque -
it is not possible to write a transformation function that turns a picture blue.
In some ways this is a limitation - for instance, the Diagrams library appears to
support some notion of attribute overriding; however it does keep wumpus-core

conceptually simple. If one wanted to draw blue or red arrows with wumpus-core

, one would make drawing colour a parameter of the arrow creation function.

4 Affine transformations

For affine transformations Wumpus uses the Matrix3’3 data type to represent
3x3 matrices in row-major form. The constructor (M3’3 a b c d e f g h i)

builds this matrix:

a b c
d e f
g h i

Note, in practice the elements g and h are superflous. They are included
in the data type to make it match the typical representation from geometry

3

texts. Also, typically matrices will implicitly created with functions from the
Core.Geometry and Core.AffineTrans modules.

For example a translation matrix moving 10 units in the X-axis and 20 in the
Y-axis will be encoded as (M3’3 1.0 0.0 10.0 0.0 1.0 20.0 0.0 0.0 1.0)

1.0 0.0 10.0
0.0 1.0 20.0
0.0 0.0 1.0

Affine transformations are communicated to PostScript as concat com-
mands. Effectively wumpus-core performs no transformations itself, delegating
all the work to PostScript or SVG. This means transformations can generally be
located in the output if a picture needs to be debugged, though as this might not
be very helpful in practice. Internally wumpus-core only performs the trans-
formation on the pictures bounding box - it needs to do this so transformed
pictures can still be composed with the picBeside combinator.

PostScript uses column-major form and uses a six element matrix rather
than a nine element one. The translation matrix above would produce this
concat command:

[1.0 0.0 0.0 1.0 10.0 20.0] concat

Similarly, it would be communicated to SVG via a group element:

<g transform="matrix(1.0, 0.0, 0.0, 1.0, 10.0, 20.0)"> ... </g>

For efficiency reasons wumpus-core supports some transformations on Prim-
itives. These are not affine transformations as Primitives are not in an affine
frame until they are lifted to Pictures (Primitives have no notion of origin).
For Paths, all the transformations are precomputed before the output is gener-
ated. Unfortunately scaling and rotation cannot be precomputed for labels and
ellipses, so matrix operations are generated in the PostScript and SVG output.

5 Font handling

Font handling is quite primitive in wumpus-core . The bounding box of text
label is only estimated - based on the length of the label’s string rather than
the metrics of the individual letters encoded in the font. Accessing the glyph
metrics in a font would require a font loader to read TrueType font files. This
would be a significant development effort, probably larger than the effort put
into wumpus-core itself; for wumpus-core ’s intended use - producing diagrams
and pictures rather than high quality text - its primitive font handling is not
such a draw back.

In both PostScript and SVGmis-named fonts can cause somewhat inscrutable
printing anomalies - usually falling back to a default font but not always.
At worst, PostScript may do no subsequent drawing after a font load error.
wumpus-core uses scalefont in the generated PostScript, this semingly works

4

for any integer size and not just the regular font sizes (10, 12, 18, 24, 36). Older
versions of wumpus-core mention that using non-standard sizes may cause font
loading problems, however this does not appear to be the case.

The following table lists PostScript fonts and their SVG equivalents. As of re-
vision 0.20.0, the package wumpus-basic includes a module Wumpus.Basic.SafeFonts
encoding the fonts in this list to avoid typographical slips.

PostScript name SVG name
Times-Roman Times New Roman
Times-Italic Times New Roman - style=”italic”
Times-Bold Times New Roman - font-weight=”bold”
Times-BoldItalic Times New Roman - style=”italic”, font-weight=”bold”
Helvetica Helvetica
Helvetica-Oblique Helvetica - style=”italic”
Helvetica-Bold Helvetica - font-weight=”bold”
Helvetica-Bold-Oblique Helvetica - style=”italic”, font-weight=”bold”
Courier Courier New
Courier-Oblique Courier New - style=”italic”
Courier-Bold Courier New - font-weight=”bold”
Courier-Bold-Oblique Courier New - style=”italic”, font-weight=”bold”
Symbol Symbol

6 Acknowledgments

PostScript is a registered trademark of Adobe Systems Inc.

5

