-- | @PolyKinds@ variant of base's `Data.Functor.Product.Product`. -- -- Note that to some extent base's `Product` is already poly-kinded, -- but it has problematic type class instances which are not poly-kinded. -- Furthermore, the mere existence of the non poly-kinded instances disallows -- orphan instances declaration of proper poly-kinded instances. -- -- If/when `Product` from base will be fixed -- (see https://gitlab.haskell.org/ghc/ghc/issues/17015 for more details) -- this module will be removed and its uses will be replaced with `Product` from base. {-# LANGUAGE DeriveDataTypeable, PolyKinds, Safe #-} module Data.Functor.Product.PolyKinds (Product(..)) where import Control.Applicative import Control.Monad (MonadPlus(..)) import Control.Monad.Fix (MonadFix(..)) import Control.Monad.Zip (MonadZip(mzipWith)) import Data.Data (Data) import Data.Functor.Classes import GHC.Generics (Generic, Generic1) import Prelude.Compat -- | A @PolyKinds@ variant of 'Data.Functor.Product.Product'. -- -- Note that the original 'Data.Functor.Product.Product' is poly-kinded -- in its type, but not in its instances such as 'Eq'. data Product f g a = Pair (f a) (g a) deriving (Data, Generic, Generic1, Eq, Ord, Read, Show) instance (Eq1 f, Eq1 g) => Eq1 (Product f g) where liftEq eq (Pair x1 y1) (Pair x2 y2) = liftEq eq x1 x2 && liftEq eq y1 y2 instance (Ord1 f, Ord1 g) => Ord1 (Product f g) where liftCompare comp (Pair x1 y1) (Pair x2 y2) = liftCompare comp x1 x2 <> liftCompare comp y1 y2 instance (Read1 f, Read1 g) => Read1 (Product f g) where liftReadPrec rp rl = readData $ readBinaryWith (liftReadPrec rp rl) (liftReadPrec rp rl) "Pair" Pair liftReadListPrec = liftReadListPrecDefault liftReadList = liftReadListDefault instance (Show1 f, Show1 g) => Show1 (Product f g) where liftShowsPrec sp sl d (Pair x y) = showsBinaryWith (liftShowsPrec sp sl) (liftShowsPrec sp sl) "Pair" d x y instance (Functor f, Functor g) => Functor (Product f g) where fmap f (Pair x y) = Pair (fmap f x) (fmap f y) a <$ (Pair x y) = Pair (a <$ x) (a <$ y) instance (Foldable f, Foldable g) => Foldable (Product f g) where foldMap f (Pair x y) = foldMap f x <> foldMap f y instance (Traversable f, Traversable g) => Traversable (Product f g) where traverse f (Pair x y) = liftA2 Pair (traverse f x) (traverse f y) instance (Applicative f, Applicative g) => Applicative (Product f g) where pure x = Pair (pure x) (pure x) Pair f g <*> Pair x y = Pair (f <*> x) (g <*> y) liftA2 f (Pair a b) (Pair x y) = Pair (liftA2 f a x) (liftA2 f b y) instance (Alternative f, Alternative g) => Alternative (Product f g) where empty = Pair empty empty Pair x1 y1 <|> Pair x2 y2 = Pair (x1 <|> x2) (y1 <|> y2) instance (Monad f, Monad g) => Monad (Product f g) where Pair m n >>= f = Pair (m >>= fstP . f) (n >>= sndP . f) where fstP (Pair a _) = a sndP (Pair _ b) = b instance (MonadPlus f, MonadPlus g) => MonadPlus (Product f g) where mzero = Pair mzero mzero Pair x1 y1 `mplus` Pair x2 y2 = Pair (x1 `mplus` x2) (y1 `mplus` y2) instance (MonadFix f, MonadFix g) => MonadFix (Product f g) where mfix f = Pair (mfix (fstP . f)) (mfix (sndP . f)) where fstP (Pair a _) = a sndP (Pair _ b) = b instance (MonadZip f, MonadZip g) => MonadZip (Product f g) where mzipWith f (Pair x1 y1) (Pair x2 y2) = Pair (mzipWith f x1 x2) (mzipWith f y1 y2)