-- | -- Copyright : Anders Claesson 2013 -- Maintainer : Anders Claesson -- -- Permutation diagrams, or permutations as monads. module Sym.Permgram ( -- * Data types Label , Permgram -- * Accessors , perm , label , size -- * Construct permgrams , permgram , inverse ) where import Data.Ord import Data.List import Control.Monad import Sym.Perm (Perm, unsafeAt) import qualified Sym.Perm as P import Data.Vector (Vector, (!)) import qualified Data.Vector as V -- | The purpose of this data type is to assign labels to the indices of -- a given permutation. type Label a = Vector a -- | A permgram consists of a permutation together with a label for each -- index of the permutation. data Permgram a = PGram { -- | The underlying permutation. perm :: Perm -- | The assignment of labels to indices. , label :: Label a } constituents :: Permgram a -> (Perm, [a]) constituents (PGram v f) = (v, V.toList f) instance Show a => Show (Permgram a) where show w = let (v, ys) = constituents w in unwords ["permgram", "(" ++ show v ++ ")", show ys] instance Eq a => Eq (Permgram a) where u == v = constituents u == constituents v instance Ord a => Ord (Permgram a) where compare u v = case comparing size u v of EQ -> comparing constituents u v x -> x -- | Construct a permgram from an underlying permutation and a list of -- labels. permgram :: Perm -> [a] -> Permgram a permgram v = PGram v . V.fromListN (P.size v) . cycle -- | The inverse permgram. It's obtained by mirroring the permgram in -- the /x=y/ diagonal. inverse :: Permgram a -> Permgram a inverse (PGram u f) = PGram (P.fromList v) (V.fromListN n (map (f!) v)) where v = map snd . sort $ zip (P.toList u) [0..] -- v = u^{-1} n = P.size u -- | The size of a permgram is the size of the underlying permutation. size :: Permgram a -> Int size = P.size . perm instance Functor Permgram where fmap f w = w { label = V.map f (label w) } instance Applicative Permgram where pure x = permgram (P.fromList [0]) [x] (<*>) = ap instance Monad Permgram where w >>= f = joinPermgram $ fmap f w joinPermgram :: Permgram (Permgram a) -> Permgram a joinPermgram w@(PGram u f) = PGram (P.fromList xs) (V.fromListN m ys) where len = V.map size f m = sum $ V.toList len n = size w uInverse = map snd . sort $ zip (P.toList u) [0..] a = V.fromListN n . scanl (+) 0 $ map (len!) uInverse (xs, ys) = unzip $ do i <- [0..n-1] let PGram v g = f ! i let d = a ! (u `unsafeAt` i) [ (d + v `P.unsafeAt` j, g!j) | j <- [0 .. len!i - 1] ]