module Data.Singletons.Prelude.Ord (
POrd(..), SOrd(..),
thenCmp, ThenCmp, sThenCmp,
Sing(SLT, SEQ, SGT),
ThenCmpSym0, ThenCmpSym1, ThenCmpSym2,
LTSym0, EQSym0, GTSym0,
CompareSym0, CompareSym1, CompareSym2,
(:<$), (:<$$), (:<$$$),
(:<=$), (:<=$$), (:<=$$$),
(:>$), (:>$$), (:>$$$),
(:>=$), (:>=$$), (:>=$$$),
MaxSym0, MaxSym1, MaxSym2,
MinSym0, MinSym1, MinSym2
) where
import Data.Singletons.Promote
import Data.Singletons.Single
import Data.Singletons.Prelude.Eq
import Data.Singletons.Prelude.Instances
import Data.Singletons.Prelude.Bool
import Data.Singletons
import Data.Singletons.Util
$(promoteOnly [d|
class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a
compare x y = if x == y then EQ
else if x <= y then LT
else GT
x < y = case compare x y of { LT -> True; _ -> False }
x <= y = case compare x y of { GT -> False; _ -> True }
x > y = case compare x y of { GT -> True; _ -> False }
x >= y = case compare x y of { LT -> False; _ -> True }
max x y = if x <= y then y else x
min x y = if x <= y then x else y
|])
type family CaseOrdering (ord :: Ordering) (lt :: k) (eq :: k) (gt :: k) :: k
type instance CaseOrdering LT lt eq gt = lt
type instance CaseOrdering EQ lt eq gt = eq
type instance CaseOrdering GT lt eq gt = gt
class (kproxy ~ 'KProxy, SEq ('KProxy :: KProxy a))
=> SOrd (kproxy :: KProxy a) where
sCompare :: forall (x :: a) (y :: a). Sing x -> Sing y -> Sing (Compare x y)
(%:<) :: forall (x :: a) (y :: a). Sing x -> Sing y -> Sing (x :< y)
(%:<=) :: forall (x :: a) (y :: a). Sing x -> Sing y -> Sing (x :<= y)
(%:>) :: forall (x :: a) (y :: a). Sing x -> Sing y -> Sing (x :> y)
(%:>=) :: forall (x :: a) (y :: a). Sing x -> Sing y -> Sing (x :>= y)
sMax :: forall (x :: a) (y :: a). Sing x -> Sing y -> Sing (Max x y)
sMin :: forall (x :: a) (y :: a). Sing x -> Sing y -> Sing (Min x y)
default sCompare :: forall (x :: a) (y :: a).
(Compare x y ~ If (x :== y) EQ (If (x :<= y) LT GT))
=> Sing x -> Sing y -> Sing (Compare x y)
sCompare x y = sIf (x %:== y) SEQ
(sIf (x %:<= y) SLT SGT)
default (%:<) :: forall (x :: a) (y :: a).
((x :< y) ~ CaseOrdering (Compare x y) True False False)
=> Sing x -> Sing y -> Sing (x :< y)
x %:< y = case sCompare x y of { SLT -> STrue; SEQ -> SFalse; SGT -> SFalse }
default (%:<=) :: forall (x :: a) (y :: a).
((x :<= y) ~ CaseOrdering (Compare x y) True True False)
=> Sing x -> Sing y -> Sing (x :<= y)
x %:<= y = case sCompare x y of { SLT -> STrue; SEQ -> STrue; SGT -> SFalse }
default (%:>) :: forall (x :: a) (y :: a).
((x :> y) ~ CaseOrdering (Compare x y) False False True)
=> Sing x -> Sing y -> Sing (x :> y)
x %:> y = case sCompare x y of { SLT -> SFalse; SEQ -> SFalse; SGT -> STrue }
default (%:>=) :: forall (x :: a) (y :: a).
((x :>= y) ~ CaseOrdering (Compare x y) False True True)
=> Sing x -> Sing y -> Sing (x :>= y)
x %:>= y = case sCompare x y of { SLT -> SFalse; SEQ -> STrue; SGT -> STrue }
default sMax :: forall (x :: a) (y :: a).
(Max x y ~ If (x :<= y) y x)
=> Sing x -> Sing y -> Sing (Max x y)
sMax x y = sIf (x %:<= y) y x
default sMin :: forall (x :: a) (y :: a).
(Min x y ~ If (x :<= y) x y)
=> Sing x -> Sing y -> Sing (Min x y)
sMin x y = sIf (x %:<= y) x y
$(singletons [d|
thenCmp :: Ordering -> Ordering -> Ordering
thenCmp EQ x = x
thenCmp LT _ = LT
thenCmp GT _ = GT
|])
$(promoteOrdInstances basicTypes)