{-# OPTIONS_GHC -fno-warn-unused-imports #-} {-# OPTIONS_HADDOCK show-extensions #-} -- | Module : Debug.SimpleExpr.Tutorial -- Copyright : (C) 2023 Alexey Tochin -- License : BSD3 (see the file LICENSE) -- Maintainer : Alexey Tochin <Alexey.Tochin@gmail.com> -- -- Tutorial, Quick start or Demo for 'simple-expr' package. module Debug.SimpleExpr.Tutorial ( -- * Quick start -- $quick_start2 -- * Expression simplification -- $expression_simplification -- * Visualisation -- $visualisation ) where import Control.Concurrent (ThreadId) import Data.Graph.DGraph (DGraph) import Debug.SimpleExpr import Debug.SimpleExpr.GraphUtils import NumHask (sin, (**)) import Prelude (FilePath, IO, String) -- $quick_start2 #simple_expr_tutorial_head# -- -- >>> import Prelude (String) -- >>> import Debug.SimpleExpr (variable, unaryFunc, binaryFunc) -- >>> import NumHask (sin, (**)) -- -- Let us build an example symbolic expression for -- -- \[ -- f(x) := \sin x^2 -- \] -- -- It can be done as follows -- -- >>> x = variable "x" -- >>> sin (x ** 2) -- sin(x^2) -- -- where terms @x@ and @sin (x ** 2)@ have type 'SimpleExpr'. -- It is just a syntactic tree where the role of leaves is played by -- variables and numbers. -- We used -- 'variable'@ :: @'String'@ -> @'SimpleExpr' -- to build the expression for variable @x@. -- For the sine function we attracted a predefined term -- 'sin'@ :: @'SimpleExpr'@ -> @'SimpleExpr'. -- -- As well we can define a custom function using 'unaryFunc' and binary functoins using 'binaryFunc' as follows -- -- >>> f = unaryFunc "f" -- >>> (-*-) = binaryFunc "-*-" -- >>> f x -*- f x -- f(x)-*-f(x) -- -- There is also a typeclass 'Expr' that includes `SimpleExpr` as well as it's tuples and lists. -- $expression_simplification -- >>> import Prelude (($)) -- >>> import Debug.SimpleExpr (variable, simplify) -- >>> import NumHask ((+), (-), (*)) -- -- We can try to simplify an expressions with the aid of quite a primitive 'simplify' method -- -- >>> x = variable "x" -- >>> simplify $ (x + 0) * 1 - x * (3 - 2) -- 0 -- $visualisation -- >>> import Debug.SimpleExpr (variable, unaryFunc) -- >>> import Debug.SimpleExpr.GraphUtils (plotExpr, plotDGraphPng, exprToGraph) -- >>> import NumHask (exp, (*), (+), (-)) -- -- There is a built-in tool to visualize expression that attracts -- [graphite](https://hackage.haskell.org/package/graphite) -- package to transform expressions to -- [graphs](https://hackage.haskell.org/package/graphs) -- and -- [graphviz](https://hackage.haskell.org/package/graphviz) -- to render the images. -- -- Consider first a simple composition for two functions @f@ and @g@ -- -- >>> x = variable "x" -- >>> f = unaryFunc "f" -- >>> g = unaryFunc "g" -- >>> expr = g (f x) -- >>> expr -- g(f(x)) -- -- This symbolic expression can be plotted by -- 'plotExpr'@ :: @'Expr'@ d => d -> @'IO' 'ThreadId' -- like -- -- @ plotExpr expr @ -- -- ![image description](/home/alexey/Dropbox/projects/deep-ml/simple-expr/doc/images/composition.png) -- -- To save the image as a file use, for example, -- -- 'plotDGraphPng'@ (@'exprToGraph'@ expr) pathToFile @, -- -- where -- -- 'exprToGraph'@ :: @'Expr'@ d => d -> @'DGraph' 'String'@ () @ -- -- transforms an expression to a graph -- and -- -- 'plotDGraphPng'@ :: @'DGraph'@ v e -> @'FilePath'@ -> @'IO' 'FilePath'. -- -- plats the graph. -- -- Consider now a more representative example -- -- \[ -- e^{i k x} + e^{ - i k x} -- \] -- -- >>> :{ -- x, k, i, expr :: SimpleExpr -- x = variable "x" -- k = variable "k" -- i = variable "i" -- expr = exp (i * k * x) + exp (-(i * k * x)) -- :} -- -- ![image description](doc/images/imaginary_expr_sum.png)