#ifndef MIN_VERSION_comonad
#define MIN_VERSION_comonad(x,y,z) 1
#endif
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
#if MIN_VERSION_comonad(3,0,3)
#else
#endif
#endif
module Data.Semifunctor
( Semifunctor(..)
, Bi(..)
, (#)
, semibimap
, semifirst
, semisecond
, first
, second
, WrappedFunctor(..)
, WrappedTraversable1(..)
, module Control.Category
, module Data.Semigroupoid
, module Data.Semigroupoid.Ob
, module Data.Semigroupoid.Product
) where
import Control.Arrow hiding (first, second, left, right)
import Control.Category
import Control.Comonad
import Control.Monad (liftM)
import Data.Distributive
import Data.Functor.Bind
import Data.Functor.Extend
import Data.Traversable
import Data.Semigroup.Traversable
import Data.Semigroupoid
import Data.Semigroupoid.Dual
import Data.Semigroupoid.Ob
import Data.Semigroupoid.Product
import Prelude hiding ((.),id, mapM)
class (Semigroupoid c, Semigroupoid d) => Semifunctor f c d | f c -> d, f d -> c where
semimap :: c a b -> d (f a) (f b)
data WrappedFunctor f a = WrapFunctor { unwrapFunctor :: f a }
instance Functor f => Semifunctor (WrappedFunctor f) (->) (->) where
semimap f = WrapFunctor . fmap f . unwrapFunctor
instance (Traversable f, Bind m, Monad m) => Semifunctor (WrappedFunctor f) (Kleisli m) (Kleisli m) where
semimap (Kleisli f) = Kleisli $ liftM WrapFunctor . mapM f . unwrapFunctor
instance (Distributive f, Extend w) => Semifunctor (WrappedFunctor f) (Cokleisli w) (Cokleisli w) where
semimap (Cokleisli w) = Cokleisli $ WrapFunctor . cotraverse w . fmap unwrapFunctor
data WrappedTraversable1 f a = WrapTraversable1 { unwrapTraversable1 :: f a }
instance (Traversable1 f, Bind m) => Semifunctor (WrappedTraversable1 f) (Kleisli m) (Kleisli m) where
semimap (Kleisli f) = Kleisli $ fmap WrapTraversable1 . traverse1 f . unwrapTraversable1
data Bi p a where
Bi :: p a b -> Bi p (a,b)
instance Semifunctor f c d => Semifunctor f (Dual c) (Dual d) where
semimap (Dual f) = Dual (semimap f)
(#) :: a -> b -> Bi (,) (a,b)
a # b = Bi (a,b)
fstP :: Bi (,) (a, b) -> a
fstP (Bi (a,_)) = a
sndP :: Bi (,) (a, b) -> b
sndP (Bi (_,b)) = b
left :: a -> Bi Either (a,b)
left = Bi . Left
right :: b -> Bi Either (a,b)
right = Bi . Right
instance Semifunctor (Bi (,)) (Product (->) (->)) (->) where
semimap (Pair l r) (Bi (a,b)) = l a # r b
instance Semifunctor (Bi Either) (Product (->) (->)) (->) where
semimap (Pair l _) (Bi (Left a)) = Bi (Left (l a))
semimap (Pair _ r) (Bi (Right b)) = Bi (Right (r b))
instance Bind m => Semifunctor (Bi (,)) (Product (Kleisli m) (Kleisli m)) (Kleisli m) where
semimap (Pair l r) = Kleisli (\ (Bi (a, b)) -> (#) <$> runKleisli l a <.> runKleisli r b)
instance Bind m => Semifunctor (Bi Either) (Product (Kleisli m) (Kleisli m)) (Kleisli m) where
semimap (Pair (Kleisli l0) (Kleisli r0)) = Kleisli (lr l0 r0) where
lr :: Functor m => (a -> m c) -> (b -> m d) -> Bi Either (a,b) -> m (Bi Either (c,d))
lr l _ (Bi (Left a)) = left <$> l a
lr _ r (Bi (Right b)) = right <$> r b
instance Extend w => Semifunctor (Bi (,)) (Product (Cokleisli w) (Cokleisli w)) (Cokleisli w) where
semimap (Pair l r) = Cokleisli $ \p -> runCokleisli l (fstP <$> p) # runCokleisli r (sndP <$> p)
semibimap :: Semifunctor p (Product l r) cod => l a b -> r c d -> cod (p (a,c)) (p (b,d))
semibimap f g = semimap (Pair f g)
semifirst :: (Semifunctor p (Product l r) cod, Ob r c) => l a b -> cod (p (a,c)) (p (b,c))
semifirst f = semimap (Pair f semiid)
semisecond :: (Semifunctor p (Product l r) cod, Ob l a) => r b c -> cod (p (a,b)) (p (a,c))
semisecond f = semimap (Pair semiid f)
first :: (Semifunctor p (Product l r) cod, Category r) => l a b -> cod (p (a,c)) (p (b,c))
first f = semimap (Pair f id)
second :: (Semifunctor p (Product l r) cod, Category l) => r b c -> cod (p (a,b)) (p (a,c))
second f = semimap (Pair id f)