** Calling: z3 -nw -in -smt2 [GOOD] ; Automatically generated by SBV. Do not edit. [GOOD] (set-option :print-success true) [GOOD] (set-option :global-declarations true) [GOOD] (set-option :smtlib2_compliant true) [GOOD] (set-option :diagnostic-output-channel "stdout") [GOOD] (set-option :produce-models true) [GOOD] (set-option :pp.max_depth 4294967295) [GOOD] (set-option :pp.min_alias_size 4294967295) [GOOD] (set-option :model.inline_def true ) [GOOD] (set-logic ALL) ; has unbounded values, using catch-all. [GOOD] ; --- uninterpreted sorts --- [GOOD] ; --- tuples --- [GOOD] (declare-datatypes ((SBVTuple2 2)) ((par (T1 T2) ((mkSBVTuple2 (proj_1_SBVTuple2 T1) (proj_2_SBVTuple2 T2)))))) [GOOD] ; --- sums --- [GOOD] ; --- literal constants --- [GOOD] (define-fun s3 () (Seq Int) (seq.++ (seq.unit 1) (seq.unit 2) (seq.unit 3) (seq.unit 4) (seq.unit 5) (seq.unit 6) (seq.unit 7) (seq.unit 8) (seq.unit 9) (seq.unit 10))) [GOOD] (define-fun s5 () (Seq Int) (seq.++ (seq.unit 11) (seq.unit 12) (seq.unit 13) (seq.unit 14) (seq.unit 15) (seq.unit 16) (seq.unit 17) (seq.unit 18) (seq.unit 19) (seq.unit 20))) [GOOD] (define-fun s7 () Int 0) [GOOD] (define-fun s10 () (Seq Int) (as seq.empty (Seq Int))) [GOOD] ; --- top level inputs --- [GOOD] (declare-fun s0 () (Seq Int)) [GOOD] (declare-fun s1 () (Seq Int)) [GOOD] (declare-fun s2 () (Seq Int)) [GOOD] ; --- constant tables --- [GOOD] ; --- non-constant tables --- [GOOD] ; --- arrays --- [GOOD] ; --- uninterpreted constants --- [GOOD] ; --- user defined functions --- [GOOD] ; --- assignments --- [GOOD] (define-fun s4 () Bool (= s0 s3)) [GOOD] (define-fun s6 () Bool (= s1 s5)) [GOOD] (define-fun s8 () Int (seq.len s1)) [GOOD] (define-fun s9 () Bool (<= s8 s7)) [GOOD] (define-fun s11 () Int (seq.len s0)) [GOOD] (define-fun s12 () Bool (>= s8 s11)) [GOOD] (define-fun s13 () (Seq Int) (seq.extract s0 s7 s8)) [GOOD] (define-fun s14 () (Seq Int) (ite s12 s0 s13)) [GOOD] (define-fun s15 () (Seq Int) (ite s9 s10 s14)) [GOOD] (define-fun s16 () (Seq (SBVTuple2 Int Int)) (seq.mapi (lambda ((l1_s0 Int) (l1_s1 Int)) ((as mkSBVTuple2 (SBVTuple2 Int Int)) l1_s0 l1_s1)) s7 s15)) [GOOD] (define-fun s17 () (Seq Int) (seq.map (lambda ((l1_s0 (SBVTuple2 Int Int))) (let ((l1_s1 (proj_2_SBVTuple2 l1_s0))) (let ((l1_s2 (proj_1_SBVTuple2 l1_s0))) (let ((l1_s3 (seq.nth s1 l1_s2))) (let ((l1_s4 (+ l1_s1 l1_s3))) l1_s4))))) s16)) [GOOD] (define-fun s18 () Bool (= s2 s17)) [GOOD] ; --- arrayDelayeds --- [GOOD] ; --- arraySetups --- [GOOD] ; --- delayedEqualities --- [GOOD] ; --- formula --- [GOOD] (assert s4) [GOOD] (assert s6) [GOOD] (assert s18) [SEND] (check-sat) [RECV] sat [SEND] (get-value (s2)) [RECV] ((s2 (seq.++ (seq.unit 12) (seq.unit 14) (seq.unit 16) (seq.unit 18) (seq.unit 20) (seq.unit 22) (seq.unit 24) (seq.unit 26) (seq.unit 28) (seq.unit 30)))) [SEND] (get-value (s0)) [RECV] ((s0 (seq.++ (seq.unit 1) (seq.unit 2) (seq.unit 3) (seq.unit 4) (seq.unit 5) (seq.unit 6) (seq.unit 7) (seq.unit 8) (seq.unit 9) (seq.unit 10)))) [SEND] (get-value (s1)) [RECV] ((s1 (seq.++ (seq.unit 11) (seq.unit 12) (seq.unit 13) (seq.unit 14) (seq.unit 15) (seq.unit 16) (seq.unit 17) (seq.unit 18) (seq.unit 19) (seq.unit 20)))) [SEND] (get-value (s2)) [RECV] ((s2 (seq.++ (seq.unit 12) (seq.unit 14) (seq.unit 16) (seq.unit 18) (seq.unit 20) (seq.unit 22) (seq.unit 24) (seq.unit 26) (seq.unit 28) (seq.unit 30)))) *** Solver : Z3 *** Exit code: ExitSuccess RESULT: s0 = [1,2,3,4,5,6,7,8,9,10] :: [Integer] s1 = [11,12,13,14,15,16,17,18,19,20] :: [Integer] s2 = [12,14,16,18,20,22,24,26,28,30] :: [Integer]