{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TypeApplications #-} {-# OPTIONS_GHC -fno-warn-orphans #-} #if __GLASGOW_HASKELL__ >= 805 {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE DerivingStrategies #-} {-# LANGUAGE DerivingVia #-} {-# LANGUAGE TypeInType #-} #endif import Control.Monad import Control.Monad.ST import Data.Complex import Data.Primitive import Data.Word import Data.Proxy (Proxy(..)) import GHC.Int import GHC.IO import GHC.Exts import Data.Function (on) import Control.Applicative (Const(..)) import PrimLaws (primLaws) import Data.Functor.Identity (Identity(..)) import qualified Data.Monoid as Monoid import Data.Ord (Down(..)) import Data.Semigroup (stimes, stimesMonoid) import qualified Data.Semigroup as Semigroup #if !(MIN_VERSION_base(4,11,0)) import Data.Monoid ((<>)) #endif #if __GLASGOW_HASKELL__ >= 805 import Foreign.Storable (Storable) #endif import Data.Orphans () import Test.Tasty (defaultMain,testGroup,TestTree) import Test.QuickCheck (Arbitrary,Arbitrary1,Gen,CoArbitrary,Function,(===),(==>)) import qualified Test.Tasty.QuickCheck as TQC import qualified Test.QuickCheck as QC import qualified Test.QuickCheck.Classes.Base as QCC import qualified Test.QuickCheck.Classes.Base.IsList as QCCL import qualified Data.List as L main :: IO () main = do testArray testByteArray defaultMain $ testGroup "properties" [ testGroup "Array" [ lawsToTest (QCC.eqLaws (Proxy :: Proxy (Array Int))) , lawsToTest (QCC.ordLaws (Proxy :: Proxy (Array Int))) , lawsToTest (QCC.monoidLaws (Proxy :: Proxy (Array Int))) , lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int))) , lawsToTest (QCC.functorLaws (Proxy :: Proxy Array)) , lawsToTest (QCC.applicativeLaws (Proxy :: Proxy Array)) , lawsToTest (QCC.alternativeLaws (Proxy :: Proxy Array)) , lawsToTest (QCC.monadLaws (Proxy :: Proxy Array)) , lawsToTest (QCC.monadZipLaws (Proxy :: Proxy Array)) , lawsToTest (QCC.monadPlusLaws (Proxy :: Proxy Array)) , lawsToTest (QCC.foldableLaws (Proxy :: Proxy Array)) , lawsToTest (QCC.traversableLaws (Proxy :: Proxy Array)) , lawsToTest (QCC.isListLaws (Proxy :: Proxy (Array Int))) , TQC.testProperty "mapArray'" (QCCL.mapProp int16 int32 mapArray') , TQC.testProperty "*>" $ \(xs :: Array Int) (ys :: Array Int) -> toList (xs *> ys) === (toList xs *> toList ys) , TQC.testProperty "<*" $ \(xs :: Array Int) (ys :: Array Int) -> toList (xs <* ys) === (toList xs <* toList ys) , lawsToTest (QCC.semigroupLaws (Proxy :: Proxy (Array Int))) , TQC.testProperty "stimes" $ \(QC.NonNegative (n :: Int)) (xs :: Array Int) -> stimes n xs == stimesMonoid n xs ] , testGroup "SmallArray" [ lawsToTest (QCC.eqLaws (Proxy :: Proxy (SmallArray Int))) , lawsToTest (QCC.ordLaws (Proxy :: Proxy (SmallArray Int))) , lawsToTest (QCC.monoidLaws (Proxy :: Proxy (SmallArray Int))) , lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int))) , lawsToTest (QCC.functorLaws (Proxy :: Proxy SmallArray)) , lawsToTest (QCC.applicativeLaws (Proxy :: Proxy SmallArray)) , lawsToTest (QCC.alternativeLaws (Proxy :: Proxy SmallArray)) , lawsToTest (QCC.monadLaws (Proxy :: Proxy SmallArray)) , lawsToTest (QCC.monadZipLaws (Proxy :: Proxy SmallArray)) , lawsToTest (QCC.monadPlusLaws (Proxy :: Proxy SmallArray)) , lawsToTest (QCC.foldableLaws (Proxy :: Proxy SmallArray)) , lawsToTest (QCC.traversableLaws (Proxy :: Proxy SmallArray)) , lawsToTest (QCC.isListLaws (Proxy :: Proxy (SmallArray Int))) , TQC.testProperty "mapSmallArray'" (QCCL.mapProp int16 int32 mapSmallArray') , TQC.testProperty "*>" $ \(xs :: SmallArray Int) (ys :: SmallArray Int) -> toList (xs *> ys) === (toList xs *> toList ys) , TQC.testProperty "<*" $ \(xs :: SmallArray Int) (ys :: SmallArray Int) -> toList (xs <* ys) === (toList xs <* toList ys) , lawsToTest (QCC.semigroupLaws (Proxy :: Proxy (SmallArray Int))) , TQC.testProperty "stimes" $ \(QC.NonNegative (n :: Int)) (xs :: SmallArray Int) -> stimes n xs == stimesMonoid n xs ] , testGroup "ByteArray" [ testGroup "Ordering" [ TQC.testProperty "equality" byteArrayEqProp , TQC.testProperty "compare" byteArrayCompareProp , testGroup "Filling" [ TQC.testProperty "Int8" (setByteArrayProp (Proxy :: Proxy Int8)) , TQC.testProperty "Int16" (setByteArrayProp (Proxy :: Proxy Int16)) , TQC.testProperty "Int32" (setByteArrayProp (Proxy :: Proxy Int32)) , TQC.testProperty "Int64" (setByteArrayProp (Proxy :: Proxy Int64)) , TQC.testProperty "Int" (setByteArrayProp (Proxy :: Proxy Int)) , TQC.testProperty "Word8" (setByteArrayProp (Proxy :: Proxy Word8)) , TQC.testProperty "Word16" (setByteArrayProp (Proxy :: Proxy Word16)) , TQC.testProperty "Word32" (setByteArrayProp (Proxy :: Proxy Word32)) , TQC.testProperty "Word64" (setByteArrayProp (Proxy :: Proxy Word64)) , TQC.testProperty "Word" (setByteArrayProp (Proxy :: Proxy Word)) ] ] , testGroup "Resize" [ TQC.testProperty "shrink" byteArrayShrinkProp , TQC.testProperty "grow" byteArrayGrowProp ] , lawsToTest (QCC.eqLaws (Proxy :: Proxy ByteArray)) , lawsToTest (QCC.ordLaws (Proxy :: Proxy ByteArray)) , lawsToTest (QCC.monoidLaws (Proxy :: Proxy ByteArray)) , lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int))) , lawsToTest (QCC.isListLaws (Proxy :: Proxy ByteArray)) , TQC.testProperty "foldrByteArray" (QCCL.foldrProp word8 foldrByteArray) , lawsToTest (QCC.semigroupLaws (Proxy :: Proxy ByteArray)) , TQC.testProperty "stimes" $ \(QC.NonNegative (n :: Int)) (xs :: ByteArray) -> stimes n xs == stimesMonoid n xs ] , testGroup "PrimArray" [ lawsToTest (QCC.eqLaws (Proxy :: Proxy (PrimArray Word16))) , lawsToTest (QCC.ordLaws (Proxy :: Proxy (PrimArray Word16))) , lawsToTest (QCC.monoidLaws (Proxy :: Proxy (PrimArray Word16))) , lawsToTest (QCC.isListLaws (Proxy :: Proxy (PrimArray Word16))) , TQC.testProperty "foldrPrimArray" (QCCL.foldrProp int16 foldrPrimArray) , TQC.testProperty "foldrPrimArray'" (QCCL.foldrProp int16 foldrPrimArray') , TQC.testProperty "foldlPrimArray" (QCCL.foldlProp int16 foldlPrimArray) , TQC.testProperty "foldlPrimArray'" (QCCL.foldlProp int16 foldlPrimArray') , TQC.testProperty "foldlPrimArrayM'" (QCCL.foldlMProp int16 foldlPrimArrayM') , TQC.testProperty "mapPrimArray" (QCCL.mapProp int16 int32 mapPrimArray) , TQC.testProperty "traversePrimArray" (QCCL.traverseProp int16 int32 traversePrimArray) , TQC.testProperty "traversePrimArrayP" (QCCL.traverseProp int16 int32 traversePrimArrayP) , TQC.testProperty "imapPrimArray" (QCCL.imapProp int16 int32 imapPrimArray) , TQC.testProperty "itraversePrimArray" (QCCL.imapMProp int16 int32 itraversePrimArray) , TQC.testProperty "itraversePrimArrayP" (QCCL.imapMProp int16 int32 itraversePrimArrayP) , TQC.testProperty "generatePrimArray" (QCCL.generateProp int16 generatePrimArray) , TQC.testProperty "generatePrimArrayA" (QCCL.generateMProp int16 generatePrimArrayA) , TQC.testProperty "generatePrimArrayP" (QCCL.generateMProp int16 generatePrimArrayP) , TQC.testProperty "replicatePrimArray" (QCCL.replicateProp int16 replicatePrimArray) , TQC.testProperty "replicatePrimArrayA" (QCCL.replicateMProp int16 replicatePrimArrayA) , TQC.testProperty "replicatePrimArrayP" (QCCL.replicateMProp int16 replicatePrimArrayP) , TQC.testProperty "filterPrimArray" (QCCL.filterProp int16 filterPrimArray) , TQC.testProperty "filterPrimArrayA" (QCCL.filterMProp int16 filterPrimArrayA) , TQC.testProperty "filterPrimArrayP" (QCCL.filterMProp int16 filterPrimArrayP) , TQC.testProperty "mapMaybePrimArray" (QCCL.mapMaybeProp int16 int32 mapMaybePrimArray) , TQC.testProperty "mapMaybePrimArrayA" (QCCL.mapMaybeMProp int16 int32 mapMaybePrimArrayA) , TQC.testProperty "mapMaybePrimArrayP" (QCCL.mapMaybeMProp int16 int32 mapMaybePrimArrayP) , lawsToTest (QCC.semigroupLaws (Proxy :: Proxy (PrimArray Word16))) , TQC.testProperty "stimes" $ \(QC.NonNegative (n :: Int)) (xs :: PrimArray Word16) -> stimes n xs == stimesMonoid n xs ] , testGroup "DefaultSetMethod" [ lawsToTest (primLaws (Proxy :: Proxy DefaultSetMethod)) ] #if __GLASGOW_HASKELL__ >= 805 , testGroup "PrimStorable" [ lawsToTest (QCC.storableLaws (Proxy :: Proxy Derived)) ] #endif , testGroup "Prim" [ renameLawsToTest "Word" (primLaws (Proxy :: Proxy Word)) , renameLawsToTest "Word8" (primLaws (Proxy :: Proxy Word8)) , renameLawsToTest "Word16" (primLaws (Proxy :: Proxy Word16)) , renameLawsToTest "Word32" (primLaws (Proxy :: Proxy Word32)) , renameLawsToTest "Word64" (primLaws (Proxy :: Proxy Word64)) , renameLawsToTest "Int" (primLaws (Proxy :: Proxy Int)) , renameLawsToTest "Int8" (primLaws (Proxy :: Proxy Int8)) , renameLawsToTest "Int16" (primLaws (Proxy :: Proxy Int16)) , renameLawsToTest "Int32" (primLaws (Proxy :: Proxy Int32)) , renameLawsToTest "Int64" (primLaws (Proxy :: Proxy Int64)) , renameLawsToTest "Const" (primLaws (Proxy :: Proxy (Const Int16 Int16))) , renameLawsToTest "Down" (primLaws (Proxy :: Proxy (Down Int16))) , renameLawsToTest "Identity" (primLaws (Proxy :: Proxy (Identity Int16))) , renameLawsToTest "Dual" (primLaws (Proxy :: Proxy (Monoid.Dual Int16))) , renameLawsToTest "Sum" (primLaws (Proxy :: Proxy (Monoid.Sum Int16))) , renameLawsToTest "Product" (primLaws (Proxy :: Proxy (Monoid.Product Int16))) , renameLawsToTest "First" (primLaws (Proxy :: Proxy (Semigroup.First Int16))) , renameLawsToTest "Last" (primLaws (Proxy :: Proxy (Semigroup.Last Int16))) , renameLawsToTest "Min" (primLaws (Proxy :: Proxy (Semigroup.Min Int16))) , renameLawsToTest "Max" (primLaws (Proxy :: Proxy (Semigroup.Max Int16))) , renameLawsToTest "Complex" (primLaws (Proxy :: Proxy (Complex Double))) ] ] deriving instance Arbitrary a => Arbitrary (Down a) -- Const, Dual, Sum, Product: all have Arbitrary instances defined -- in QuickCheck itself deriving instance Arbitrary a => Arbitrary (Semigroup.First a) deriving instance Arbitrary a => Arbitrary (Semigroup.Last a) deriving instance Arbitrary a => Arbitrary (Semigroup.Min a) deriving instance Arbitrary a => Arbitrary (Semigroup.Max a) word8 :: Proxy Word8 word8 = Proxy int16 :: Proxy Int16 int16 = Proxy int32 :: Proxy Int32 int32 = Proxy setByteArrayProp :: forall a. (Prim a, Eq a, Arbitrary a, Show a) => Proxy a -> QC.Property setByteArrayProp _ = QC.property $ \(QC.NonNegative (n :: Int)) (QC.NonNegative (off :: Int)) (QC.NonNegative (len :: Int)) (x :: a) (y :: a) -> (off < n && off + len <= n) ==> -- We use PrimArray in this test because it makes it easier to -- get the element-vs-byte distinction right. let actual = runST $ do m <- newPrimArray n forM_ (enumFromTo 0 (n - 1)) $ \ix -> writePrimArray m ix x setPrimArray m off len y unsafeFreezePrimArray m expected = runST $ do m <- newPrimArray n forM_ (enumFromTo 0 (n - 1)) $ \ix -> writePrimArray m ix x forM_ (enumFromTo off (off + len - 1)) $ \ix -> writePrimArray m ix y unsafeFreezePrimArray m in expected === actual -- Tests that using resizeByteArray to shrink a byte array produces -- the same results as calling Data.List.take on the list that the -- byte array corresponds to. byteArrayShrinkProp :: QC.Property byteArrayShrinkProp = QC.property $ \(QC.NonNegative (n :: Int)) (QC.NonNegative (m :: Int)) -> let large = max n m small = min n m xs = intsLessThan large ys = byteArrayFromList xs largeBytes = large * sizeOfType @Int smallBytes = small * sizeOfType @Int expected = byteArrayFromList (L.take small xs) actual = runST $ do mzs0 <- newByteArray largeBytes copyByteArray mzs0 0 ys 0 largeBytes mzs1 <- resizeMutableByteArray mzs0 smallBytes unsafeFreezeByteArray mzs1 in expected === actual -- Tests that using resizeByteArray with copyByteArray (to fill in the -- new empty space) to grow a byte array produces the same results as -- calling Data.List.++ on the lists corresponding to the original -- byte array and the appended byte array. byteArrayGrowProp :: QC.Property byteArrayGrowProp = QC.property $ \(QC.NonNegative (n :: Int)) (QC.NonNegative (m :: Int)) -> let large = max n m small = min n m xs1 = intsLessThan small xs2 = intsLessThan (large - small) ys1 = byteArrayFromList xs1 ys2 = byteArrayFromList xs2 largeBytes = large * sizeOfType @Int smallBytes = small * sizeOfType @Int expected = byteArrayFromList (xs1 ++ xs2) actual = runST $ do mzs0 <- newByteArray smallBytes copyByteArray mzs0 0 ys1 0 smallBytes mzs1 <- resizeMutableByteArray mzs0 largeBytes copyByteArray mzs1 smallBytes ys2 0 ((large - small) * sizeOfType @Int) unsafeFreezeByteArray mzs1 in expected === actual -- Tests that writing stable ptrs to a PrimArray, reading them back -- out, and then dereferencing them gives correct results. --stablePtrPrimProp :: QC.Property --stablePtrPrimProp = QC.property $ \(xs :: [Integer]) -> unsafePerformIO $ do -- ptrs <- mapM newStablePtr xs -- let ptrs' = primArrayToList (primArrayFromList ptrs) -- ys <- mapM deRefStablePtr ptrs' -- mapM_ freeStablePtr ptrs' -- return (xs === ys) --stablePtrPrimBlockProp :: QC.Property --stablePtrPrimBlockProp = QC.property $ \(x :: Word) (QC.NonNegative (len :: Int)) -> unsafePerformIO $ do -- ptr <- newStablePtr x -- let ptrs' = replicatePrimArray len ptr -- let go ix = if ix < len -- then do -- n <- deRefStablePtr (indexPrimArray ptrs' ix) -- ns <- go (ix + 1) -- return (n : ns) -- else return [] -- ys <- go 0 -- freeStablePtr ptr -- return (L.replicate len x === ys) -- Provide the non-negative integers up to the bound. For example: -- -- >>> intsLessThan 5 -- [0,1,2,3,4] intsLessThan :: Int -> [Int] intsLessThan i = if i < 1 then [] else (i - 1) : intsLessThan (i - 1) byteArrayCompareProp :: QC.Property byteArrayCompareProp = QC.property $ \(xs :: [Word8]) (ys :: [Word8]) -> compareLengthFirst xs ys === compare (byteArrayFromList xs) (byteArrayFromList ys) byteArrayEqProp :: QC.Property byteArrayEqProp = QC.property $ \(xs :: [Word8]) (ys :: [Word8]) -> (compareLengthFirst xs ys == EQ) === (byteArrayFromList xs == byteArrayFromList ys) compareLengthFirst :: [Word8] -> [Word8] -> Ordering compareLengthFirst xs ys = (compare `on` length) xs ys <> compare xs ys lawsToTest :: QCC.Laws -> TestTree lawsToTest (QCC.Laws name pairs) = testGroup name (map (uncurry TQC.testProperty) pairs) renameLawsToTest :: String -> QCC.Laws -> TestTree renameLawsToTest name (QCC.Laws _ pairs) = testGroup name (map (uncurry TQC.testProperty) pairs) testArray :: IO () testArray = do arr <- newArray 1 'A' let unit = case writeArray arr 0 'B' of IO f -> case f realWorld# of (# _, _ #) -> () c1 <- readArray arr 0 return $! unit c2 <- readArray arr 0 if c1 == 'A' && c2 == 'B' then return () else error $ "Expected AB, got: " ++ show (c1, c2) testByteArray :: IO () testByteArray = do let arr1 = mkByteArray ([0xde, 0xad, 0xbe, 0xef] :: [Word8]) arr2 = mkByteArray ([0xde, 0xad, 0xbe, 0xef] :: [Word8]) arr3 = mkByteArray ([0xde, 0xad, 0xbe, 0xee] :: [Word8]) arr4 = mkByteArray ([0xde, 0xad, 0xbe, 0xdd] :: [Word8]) arr5 = mkByteArray ([0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xdd] :: [Word8]) arr6 = mkByteArray ([0xde, 0xad, 0x00, 0x01, 0xb0] :: [Word8]) when (show arr1 /= "[0xde, 0xad, 0xbe, 0xef]") $ fail $ "ByteArray Show incorrect: "++show arr1 when (show arr6 /= "[0xde, 0xad, 0x00, 0x01, 0xb0]") $ fail $ "ByteArray Show incorrect: "++ show arr6 when (compareByteArrays arr3 1 arr4 1 3 /= GT) $ fail $ "arr3[1,3] should be greater than arr4[1,3]" when (compareByteArrays arr3 0 arr4 1 3 /= GT) $ fail $ "arr3[0,3] should be greater than arr4[1,3]" when (compareByteArrays arr5 1 arr2 1 3 /= EQ) $ fail $ "arr3[1,3] should be equal to than arr4[1,3]" unless (arr1 > arr3) $ fail $ "ByteArray Ord incorrect" unless (arr1 == arr2) $ fail $ "ByteArray Eq incorrect" unless (mappend arr1 arr4 == arr5) $ fail $ "ByteArray Monoid mappend incorrect" unless (mappend arr1 (mappend arr3 arr4) == mappend (mappend arr1 arr3) arr4) $ fail $ "ByteArray Monoid mappend not associative" unless (mconcat [arr1,arr2,arr3,arr4,arr5] == (arr1 <> arr2 <> arr3 <> arr4 <> arr5)) $ fail $ "ByteArray Monoid mconcat incorrect" unless (stimes (3 :: Int) arr4 == (arr4 <> arr4 <> arr4)) $ fail $ "ByteArray Semigroup stimes incorrect" mkByteArray :: forall a. Prim a => [a] -> ByteArray mkByteArray xs = runST $ do marr <- newByteArray (length xs * sizeOfType @a) sequence_ $ zipWith (writeByteArray marr) [0..] xs unsafeFreezeByteArray marr instance Arbitrary1 Array where liftArbitrary elemGen = fmap fromList (QC.liftArbitrary elemGen) instance Arbitrary a => Arbitrary (Array a) where arbitrary = fmap fromList QC.arbitrary instance Arbitrary1 SmallArray where liftArbitrary elemGen = fmap smallArrayFromList (QC.liftArbitrary elemGen) instance Arbitrary a => Arbitrary (SmallArray a) where arbitrary = fmap smallArrayFromList QC.arbitrary instance Arbitrary ByteArray where arbitrary = do xs <- QC.arbitrary :: Gen [Word8] return $ runST $ do a <- newByteArray (L.length xs) iforM_ xs $ \ix x -> do writeByteArray a ix x unsafeFreezeByteArray a instance (Arbitrary a, Prim a) => Arbitrary (PrimArray a) where arbitrary = do xs <- QC.arbitrary :: Gen [a] return $ runST $ do a <- newPrimArray (L.length xs) iforM_ xs $ \ix x -> do writePrimArray a ix x unsafeFreezePrimArray a instance (Prim a, CoArbitrary a) => CoArbitrary (PrimArray a) where coarbitrary x = QC.coarbitrary (primArrayToList x) instance (Prim a, Function a) => Function (PrimArray a) where function = QC.functionMap primArrayToList primArrayFromList iforM_ :: Monad m => [a] -> (Int -> a -> m b) -> m () iforM_ xs0 f = go 0 xs0 where go !_ [] = return () go !ix (x : xs) = f ix x >> go (ix + 1) xs newtype DefaultSetMethod = DefaultSetMethod Int16 deriving (Eq,Show,Arbitrary) instance Prim DefaultSetMethod where sizeOfType# _ = sizeOfType# (Proxy :: Proxy Int16) alignmentOfType# _ = alignmentOfType# (Proxy :: Proxy Int16) indexByteArray# arr ix = DefaultSetMethod (indexByteArray# arr ix) readByteArray# arr ix s0 = case readByteArray# arr ix s0 of (# s1, n #) -> (# s1, DefaultSetMethod n #) writeByteArray# arr ix (DefaultSetMethod n) s0 = writeByteArray# arr ix n s0 setByteArray# = defaultSetByteArray# indexOffAddr# addr off = DefaultSetMethod (indexOffAddr# addr off) readOffAddr# addr off s0 = case readOffAddr# addr off s0 of (# s1, n #) -> (# s1, DefaultSetMethod n #) writeOffAddr# addr off (DefaultSetMethod n) s0 = writeOffAddr# addr off n s0 setOffAddr# = defaultSetOffAddr# #if __GLASGOW_HASKELL__ >= 805 newtype Derived = Derived Int16 deriving stock (Eq, Show) deriving newtype (Arbitrary, Prim) deriving Storable via (PrimStorable Derived) #endif