{-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Data.POMap.Properties where import Algebra.PartialOrd import Control.Arrow (first, (&&&), (***)) import Control.Monad (guard) import Data.Bifunctor (bimap) import Data.Coerce import qualified Data.Either as Either import Data.Foldable hiding (foldl', foldr', toList) import Data.Function (on) import Data.Functor.Compose import Data.Functor.Const import Data.Functor.Identity import qualified Data.List as List import qualified Data.Maybe as Maybe import Data.Monoid (Dual (..), Endo (..), Sum (..)) import Data.Ord (comparing) import Data.POMap.Arbitrary () import Data.POMap.Divisibility import Data.POMap.Lazy import Data.Traversable import Prelude hiding (filter, lookup, map, max, null) import Test.Tasty.Hspec import Test.Tasty.QuickCheck type DivMap v = POMap Divisibility v instance {-# OVERLAPPING #-} Eq v => Eq (DivMap v) where (==) = (==) `on` List.sortOn (unDiv . fst) . toList div' :: Int -> DivMap Integer div' = fromList . divisibility div100 :: DivMap Integer div100 = div' 100 div1000 :: DivMap Integer div1000 = div' 1000 primes :: [Integer] primes = 2 : [ p | p <- [3..], not . any (divides p) . takeWhile (\n -> n*n <= p) $ primes] where divides p n = p `mod` n == 0 primesUntil :: Integer -> [Integer] primesUntil n = takeWhile (<= n) primes makeEntries :: [Integer] -> [(Divisibility, Integer)] makeEntries = fmap (Div &&& id) shouldBeSameEntries :: (Eq v, Show v) => [(Divisibility, v)] -> [(Divisibility, v)] -> Expectation shouldBeSameEntries = shouldBe `on` List.sortOn (unDiv . fst) isAntichain :: PartialOrd k => [k] -> Bool isAntichain [] = True isAntichain (x:xs) = all (not . comparable x) xs && isAntichain xs spec :: Spec spec = describe "POMap" $ do describe "empty" $ do it "fromList []" $ fromList (divisibility 0) `shouldBe` empty it "is null" $ null empty `shouldBe` True it "has size 0" $ size empty `shouldBe` 0 describe "singleton" $ do let m = singleton 1 1 it "fromList [(k, v)]" $ fromList (divisibility 1) `shouldBe` m it "is not null" $ null m `shouldBe` False it "has size 1" $ size m `shouldBe` 1 describe "width" $ do it "width empty == 0" $ width empty `shouldBe` 0 it "width singleton == 1" $ width (singleton () ()) `shouldBe` 1 it "width div100 == 50" $ width div100 `shouldBe` 50 it "width div1000 == 500" $ width div1000 `shouldBe` 500 let prop100and1000 prop = do it "100 divs" $ property (prop div100 (100 :: Integer)) it "1000 divs" $ property (prop div1000 (1000 :: Integer)) describe "member" $ prop100and1000 $ \m max (Positive n) -> member (Div n) m == (n <= max) describe "lookup" $ prop100and1000 $ \m max (Positive n) -> lookup (Div n) m == (guard (n <= max) >> Just n) let lookupXProps what lu p = describe ("is " ++ what) $ prop100and1000 $ \m _ (Positive n) -> all (p (Div n) . fst) (lu (Div n) m) describe "lookupLT" $ do it "nothing less than 1" $ lookupLT 1 div100 `shouldBe` [] it "1 is less than 2" $ lookupLT 2 div100 `shouldBe` makeEntries [1] it "64 is less than 128" $ lookupLT 128 div100 `shouldBe` makeEntries [64] it "[6, 10, 15] less than 30" $ lookupLT 30 div100 `shouldBeSameEntries` makeEntries [6, 10, 15] lookupXProps "less than" lookupLT $ \a b -> not (a `leq` b) && b `leq` a describe "lookupLE" $ do it "50 leq 50" $ lookupLE 50 div100 `shouldBe` makeEntries [50] it "64 is less equal 128" $ lookupLE 128 div100 `shouldBe` makeEntries [64] it "[30, 42, 70] leq 210" $ lookupLE 210 div100 `shouldBeSameEntries` makeEntries [30, 42, 70] lookupXProps "less equal" lookupLE (flip leq) describe "lookupGE" $ do it "50 geq 50" $ lookupGE 50 div100 `shouldBe` makeEntries [50] it "Nothing is geq 101" $ lookupGE 101 div100 `shouldBe` makeEntries [] describe "lookupGT" $ do it "primes are gt 1" $ lookupGT 1 div100 `shouldBeSameEntries` makeEntries (primesUntil 100) it "Nothing is gt 101" $ lookupGT 101 div100 `shouldBe` makeEntries [] it "[66, 99] gt 33" $ lookupGT 33 div100 `shouldBeSameEntries` makeEntries [66, 99] lookupXProps "greater than" lookupGT $ \a b -> a `leq` b && not (b `leq` a) describe "insert" $ it "overwrites an entry" $ property $ \(m :: DivMap Int) k v -> lookup k (insert k v m) `shouldBe` Just v describe "insertWithKey" $ do it "can access old value" $ insertWithKey (\_ _ old -> old) 1 2 div100 `shouldBe` div100 it "can access new value" $ lookup 1 (insertWithKey (\_ new _ -> new) 1 2 div100) `shouldBe` Just 2 it "can access key" $ lookup 1 (insertWithKey (\k _ _ -> unDiv k + 2) 1 2 div100) `shouldBe` Just 3 it "adds new values without consulting the function" $ lookup 1 (insertWithKey (\_ _ _ -> 3) (Div 1) 2 empty) `shouldBe` Just (2 :: Integer) describe "insertLookupWithKey" $ do let f k new old = unDiv k + new + old it "lookup &&& insertWithKey" $ property $ \m k v -> insertLookupWithKey f k v m `shouldBe` (lookup k m, insertWithKey f k v m) describe "delete" $ it "deletes" $ property $ \(m :: DivMap Int) k -> lookup k (delete k m) `shouldBe` Nothing describe "deleteLookup" $ it "lookup &&& delete" $ property $ \(m :: DivMap Int) k -> deleteLookup k m `shouldBe` (lookup k m, delete k m) describe "adjust" $ do let f old = old + 1 it "adjusts" $ property $ \(m :: DivMap Int) k -> lookup k (adjust f k m) `shouldBe` (+1) <$> lookup k m describe "adjustWithKey" $ do let f k old = unDiv k + old + 1 it "passes the key" $ property $ \(m :: DivMap Integer) k -> lookup k (adjustWithKey f k m) `shouldBe` (unDiv k + 1 +) <$> lookup k m describe "adjustLookupWithKey" $ do let f k old = unDiv k + old + 1 it "lookup &&& adjustWithKey" $ property $ \(m :: DivMap Integer) k -> adjustLookupWithKey f k m `shouldBe` (lookup k m, adjustWithKey f k m) describe "update" $ do it "Nothing deletes" $ property $ \(m :: DivMap Int) k -> lookup k (update (const Nothing) k m) `shouldBe` Nothing let f old = old + 1 it "Just adjusts" $ property $ \(m :: DivMap Int) k -> lookup k (update (Just . f) k m) `shouldBe` lookup k (adjust f k m) describe "updateWithKey" $ do let f k old = Just (unDiv k + old + 1) it "passes the key" $ property $ \(m :: DivMap Integer) k -> lookup k (updateWithKey f k m) `shouldBe` (unDiv k + 1 +) <$> lookup k m describe "updateLookupWithKey" $ do let f k old = Just (unDiv k + old + 1) it "lookup &&& updateWithKey" $ property $ \(m :: DivMap Integer) k -> updateLookupWithKey f k m `shouldBe` (lookup k m, updateWithKey f k m) describe "alter" $ do let fJust _ = Just 4 it "const Just inserts" $ property $ \(m :: DivMap Int) k -> lookup k (alter fJust k m) `shouldBe` lookup k (insert k 4 m) let f old = Just (old + 1) it "(>>=) updates" $ property $ \(m :: DivMap Int) k -> lookup k (alter (>>= f) k m) `shouldBe` lookup k (update f k m) describe "alterWithKey" $ do let f old = (+1) <$> old it "const f alters" $ property $ \(m :: DivMap Int) k -> lookup k (alterWithKey (const f) k m) `shouldBe` lookup k (alter f k m) let g k old = Just (unDiv k + old + 1) let g' k old = old >>= g k it "(>>=) updates" $ property $ \(m :: DivMap Integer) k -> lookup k (alterWithKey g' k m) `shouldBe` lookup k (updateWithKey g k m) describe "alterLookupWithKey" $ do let f k Nothing = Just (unDiv k + 1) f _ (Just _) = Nothing it "lookup &&& alterWithKey" $ property $ \(m :: DivMap Integer) k -> alterLookupWithKey f k m `shouldBe` (lookup k m, alterWithKey f k m) describe "alterF" $ do it "Const looks up" $ property $ \(m :: DivMap Integer) k -> getConst (alterF Const k m) `shouldBe` lookup k m let f _ = Identity (Just 4) it "Identity inserts" $ property $ \(m :: DivMap Integer) k -> lookup k (runIdentity (alterF f k m)) `shouldBe` lookup k (insert k 4 m) describe "union" $ do it "domain" $ property $ \(m1 :: DivMap Integer) m2 k -> (member k m1 || member k m2) === member k (union m1 m2) it "left bias" $ property $ \(m1 :: DivMap Integer) m2 k -> (member k m1 && member k m2) ==> lookup k (union m1 m2) === lookup k m1 describe "unionWith" $ do let left l _ = l it "union == unionWith left" $ property $ \(m1 :: DivMap Integer) m2 k -> lookup k (union m1 m2) === lookup k (unionWith left m1 m2) let right _ r = r it "can have right bias" $ property $ \(m1 :: DivMap Integer) m2 k -> (member k m1 && member k m2) ==> lookup k (unionWith right m1 m2) === lookup k m2 describe "unionWithKey" $ do let left l _ = l it "unionWith f == unionWithKey (const f)" $ property $ \(m1 :: DivMap Integer) m2 k -> lookup k (unionWith left m1 m2) === lookup k (unionWithKey (const left) m1 m2) let merge k l r = unDiv k + l + r it "can access key" $ property $ \(m1 :: DivMap Integer) m2 k -> (member k m1 && member k m2) ==> lookup k (unionWithKey merge m1 m2) === (merge k <$> lookup k m1 <*> lookup k m2) describe "unions" $ do it "domain" $ forAll (vectorOf 10 arbitrary) $ \(ms :: [DivMap Integer]) k -> any (member k) ms === member k (unions ms) it "left bias" $ forAll (vectorOf 10 arbitrary) $ \(ms :: [DivMap Integer]) k -> lookup k (unions ms) === (List.find (member k) ms >>= lookup k) describe "unionsWith" $ do let left l _ = l it "unions = unionsWith left" $ forAll (vectorOf 5 arbitrary) $ \(ms :: [DivMap Integer]) k -> any (member k) ms === member k (unionsWith left ms) let right _ r = r it "can have right bias" $ forAll (vectorOf 5 arbitrary) $ \(ms :: [DivMap Integer]) k -> lookup k (unionsWith right ms) === (List.find (member k) (reverse ms) >>= lookup k) describe "difference" $ it "domain" $ property $ \(m1 :: DivMap Integer) (m2 :: DivMap ()) k -> (member k m1 && member k (difference m1 m2)) ==> not (member k m2) describe "differenceWith" $ do it "difference = differenceWith (\\_ _ -> Nothing)" $ property $ \(m1 :: DivMap Integer) (m2 :: DivMap ()) k -> lookup k (difference m1 m2) === lookup k (differenceWith (\_ _ -> Nothing) m1 m2) it "m = differenceWith (\\l _ -> Just l) m _" $ property $ \(m1 :: DivMap Integer) (m2 :: DivMap ()) k -> lookup k m1 === lookup k (differenceWith (\l _ -> Just l) m1 m2) describe "differenceWithKey" $ do let f l r = Just (l + r) it "differenceWith f = differenceWithKey (const f)" $ property $ \(m1 :: DivMap Int) (m2 :: DivMap Int) k -> lookup k (differenceWith f m1 m2) === lookup k (differenceWithKey (const f) m1 m2) describe "intersection" $ it "domain" $ property $ \(m1 :: DivMap Integer) (m2 :: DivMap ()) k -> (member k m1 && member k m2) === member k (intersection m1 m2) describe "intersectionWith" $ do let left l _ = l it "intersection = intersectionWith left" $ property $ \(m1 :: DivMap Integer) (m2 :: DivMap ()) k -> lookup k (intersection m1 m2) === lookup k (intersectionWith left m1 m2) describe "intersectionWithKey" $ do let f = (+) it "intersectionWith f = intersectionWithKey f" $ property $ \(m1 :: DivMap Int) (m2 :: DivMap Int) k -> lookup k (intersectionWith f m1 m2) === lookup k (intersectionWithKey (const f) m1 m2) let merge k l r = unDiv k + l + r it "can access key" $ property $ \(m1 :: DivMap Integer) m2 k -> (member k m1 && member k m2) ==> lookup k (intersectionWithKey merge m1 m2) === (merge k <$> lookup k m1 <*> lookup k m2) describe "map" $ do let f = (+1) it "map = fmap" $ property $ \(m :: DivMap Int) -> map f m `shouldBe` fmap f m describe "mapWithKey" $ do let f = (+1) it "mapWithKey (const f) = map f" $ property $ \(m :: DivMap Int) -> mapWithKey (const f) m `shouldBe` map f m let g k v = unDiv k + v it "can access keys" $ property $ \(m :: DivMap Integer) k -> lookup k (mapWithKey g m) `shouldBe` (unDiv k +) <$> lookup k m describe "mapAccum" $ do let f a b = a + b let g b = b + 1 it "mapAccum (\\a b -> (f a b, g b)) acc = foldr f acc &&& map g" $ property $ \(m :: DivMap Integer) -> mapAccum (\a b -> (f a b, g b)) 0 m `shouldBe` (foldr f 0 &&& map g) m describe "mapAccumWithKey" $ do let f a b = (a + b, b + 1) it "mapAccumWithKey (\\a _ b -> f a b) acc = mapAccum f acc" $ property $ \(m :: DivMap Integer) -> mapAccumWithKey (\a _ b -> f a b) 0 m `shouldBe` mapAccum f 0 m describe "mapKeys" $ do let f = Div . (+1) . unDiv it "mapKeys f = fromList . fmap (first f) . toList" $ property $ \(m :: DivMap Integer) -> mapKeys f m `shouldBe` fromList (fmap (first f) (toList m)) describe "mapKeysWith" $ do let f = Div . (\k -> (k `div` 2) + 1) . unDiv let c = (+) it "mapKeysWith c f = fromListWith c . fmap (first f) . toList" $ property $ \(m :: DivMap Integer) -> mapKeysWith c f m `shouldBe` fromListWith c (fmap (first f) (toList m)) describe "mapKeysMonotonic" $ do let f = Div . (+1) . unDiv it "mapKeysMonotonic = mapKeys" $ property $ \(m :: DivMap Integer) -> mapKeysMonotonic f m `shouldBe` mapKeys f m describe "traverseWithKey" $ do let f old = Identity (old + 1) it "traverseWithKey (const f) = traverse f" $ property $ \(m :: DivMap Int) -> runIdentity (traverseWithKey (const f) m) `shouldBe` runIdentity (traverse f m) describe "traverseMaybeWithKey" $ do let f k old = Identity (unDiv k + old + 1) it "traverseMaybeWithKey (\\k v -> Just <$> f k v) = traverseWithKey f" $ property $ \(m :: DivMap Integer) -> runIdentity (traverseMaybeWithKey (\k v -> Just <$> f k v) m) `shouldBe` runIdentity (traverseWithKey f m) describe "foldrWithKey" $ do it "foldrWithKey (const f) = foldr f" $ property $ \(m :: DivMap Int) -> foldrWithKey (const (-)) 0 m `shouldBe` foldr (-) 0 m let f k a b = unDiv k + a + b it "foldrWithKey f z = foldr (uncurry f) z . mapWithKey (,)" $ property $ \(m :: DivMap Integer) -> foldrWithKey f 0 m `shouldBe` foldr (uncurry f) 0 (mapWithKey (,) m) describe "foldlWithKey" $ do it "foldlWithKey (\a _ b -> f a b) = foldl f" $ property $ \(m :: DivMap Int) -> foldlWithKey (\a _ b -> a - b) 0 m `shouldBe` foldl (-) 0 m let f a k b = unDiv k + a + b it "foldlWithKey f z = foldl (\a (k, b) -> f a k b) z . mapWithKey (,)" $ property $ \(m :: DivMap Integer) -> foldlWithKey f 0 m `shouldBe` foldl (\a (k, b) -> f a k b) 0 (mapWithKey (,) m) describe "foldMapWithKey" $ it "foldMapWithKey (const f) = foldMap f" $ property $ \(m :: DivMap Int) -> foldMapWithKey (const Sum) m `shouldBe` foldMap Sum m describe "foldr'" $ it "foldr' = foldr" $ property $ \(m :: DivMap Int) -> foldr' (-) 0 m `shouldBe` foldr (-) 0 m describe "foldrWithKey'" $ do let f k a b = unDiv k + a + b it "foldrWithKey' = foldrWithKey" $ property $ \(m :: DivMap Integer) -> foldrWithKey' f 0 m `shouldBe` foldrWithKey f 0 m describe "foldl'" $ it "foldl' = foldl" $ property $ \(m :: DivMap Int) -> foldl' (-) 0 m `shouldBe` foldl (-) 0 m describe "foldlWithKey'" $ do let f a k b = unDiv k + a + b it "foldlWithKey' = foldlWithKey" $ property $ \(m :: DivMap Integer) -> foldlWithKey' f 0 m `shouldBe` foldlWithKey f 0 m describe "keys" $ do it "length . keys = size" $ property $ \(m :: DivMap Int) -> length (keys m) `shouldBe` size m it "all (\\k -> member k m) (keys m)" $ property $ \(m :: DivMap Int) -> all (`member` m) (keys m) `shouldBe` True describe "elems" $ it "foldMap Sum . elems = foldMap Sum" $ property $ \(m :: DivMap Int) -> foldMap Sum (elems m) `shouldBe` foldMap Sum m describe "assocs" $ do it "length . assocs = size" $ property $ \(m :: DivMap Int) -> length (assocs m) `shouldBe` size m it "List.lookup k (assocs m) = lookup k m" $ property $ \(m :: DivMap Int) k -> List.lookup k (assocs m) `shouldBe` lookup k m describe "toList" $ do it "length . toList = size" $ property $ \(m :: DivMap Int) -> length (toList m) `shouldBe` size m it "List.lookup k (toList m) = lookup k m" $ property $ \(m :: DivMap Int) k -> List.lookup k (toList m) `shouldBe` lookup k m describe "fromList" $ it "fromList = foldl (\\m (k,v) -> insert k v m) empty" $ property $ \(xs :: [(Divisibility, Int)]) -> fromList xs `shouldBe` foldl (\m (k,v) -> insert k v m) empty xs describe "fromListWith" $ do it "fromListWith const = fromList" $ property $ \(xs :: [(Divisibility, Int)]) -> fromListWith const xs `shouldBe` fromList xs let f old new = old + new it "fromListWith f = fromListWithKey (const f)" $ property $ \(xs :: [(Divisibility, Int)]) -> fromListWith f xs `shouldBe` fromListWithKey (const f) xs it "fromListWith f = foldl (\\m (k,v) -> insertWith f k v m) empty" $ property $ \(xs :: [(Divisibility, Int)]) -> fromListWith f xs `shouldBe` foldl (\m (k,v) -> insertWith f k v m) empty xs describe "fromListWithKey" $ do let f k old new = unDiv k + old + new it "fromListWithKey f = foldl (\\m (k,v) -> insertWithKey f k v m) empty" $ property $ \(xs :: [(Divisibility, Integer)]) -> fromListWithKey f xs `shouldBe` foldl (\m (k,v) -> insertWithKey f k v m) empty xs describe "filter" $ it "filter p = fromList . filter (p . snd) . toList" $ property $ \(m :: DivMap Int) -> filter odd m `shouldBe` fromList (List.filter (odd . snd) (toList m)) describe "filterWithKey" $ do let p k v = odd (unDiv k + v) it "filterWithKey p = fromList . filter (uncurry p) . toList" $ property $ \(m :: DivMap Integer) -> filterWithKey p m `shouldBe` fromList (List.filter (uncurry p) (toList m)) describe "partition" $ it "partition p = filter p &&& filter even" $ property $ \(m :: DivMap Int) -> partition odd m `shouldBe` (filter odd &&& filter even) m describe "partitionWithKey" $ do let p k v = odd (unDiv k + v) it "partitionWithKey p = filterWithKey p &&& filterWithKey ((not .) . p)" $ property $ \(m :: DivMap Integer) -> partitionWithKey p m `shouldBe` (filterWithKey p &&& filterWithKey ((not .) . p)) m describe "takeWhileAntitone" $ do let p k = unDiv k < 50 it "takeWhileAntitone p = filterWithKey (\\k _ -> p k)" $ property $ \(m :: DivMap Int) -> takeWhileAntitone p m `shouldBe` filterWithKey (\k _ -> p k) m describe "dropWhileAntitone" $ do let p k = unDiv k < 50 it "dropWhileAntitone p = filterWithKey (\\k _ -> not (p k))" $ property $ \(m :: DivMap Int) -> dropWhileAntitone p m `shouldBe` filterWithKey (\k _ -> not (p k)) m describe "spanAntitone" $ do let p k = unDiv k < 50 it "spanAntitone p = partitionWithKey (\\k _ -> p k)" $ property $ \(m :: DivMap Int) -> spanAntitone p m `shouldBe` partitionWithKey (\k _ -> p k) m describe "mapMaybe" $ do let f v = if odd v then Just (v + 1) else Nothing it "mapMaybe f = fromList . Maybe.mapMaybe (traverse f) . toList" $ property $ \(m :: DivMap Int) -> mapMaybe f m `shouldBe` fromList (Maybe.mapMaybe (traverse f) (toList m)) describe "mapMaybeWithKey" $ do let f k v = if odd (unDiv k + v) then Just (v + 1) else Nothing it "mapMaybeWithKey f = fromList . Maybe.mapMaybe (sequenceA . (fst &&& uncurry f)) . toList" $ property $ \(m :: DivMap Integer) -> mapMaybeWithKey f m `shouldBe` fromList (Maybe.mapMaybe (sequenceA . (fst &&& uncurry f)) (toList m)) describe "mapEither" $ do let f v | odd v = Left (v + 1) | otherwise = Right (v - 1) it "mapEither f = (fromList &&& fromList) . Either.partitionEithers . fmap (... f ...) . toList" $ property $ \(m :: DivMap Int) -> mapEither f m `shouldBe` ((fromList *** fromList) . Either.partitionEithers . fmap (\(k, v) -> bimap ((,) k) ((,) k) (f v)) . toList) m describe "mapEitherWithKey" $ do let f k v | odd (unDiv k + v) = Left (v + 1) | otherwise = Right (v - 1) it "mapEitherWithKey f = (fromList &&& fromList) . Either.partitionEithers . fmap (... f ...) . toList" $ property $ \(m :: DivMap Integer) -> mapEitherWithKey f m `shouldBe` ((fromList *** fromList) . Either.partitionEithers . fmap (\(k, v) -> bimap ((,) k) ((,) k) (f k v)) . toList) m describe "isSubmapOf" $ do it "div100 is submap of div1000" $ div100 `isSubmapOf` div1000 it "div1000 is not submap of div100" $ not (div1000 `isSubmapOf` div100) describe "isSubmapOfBy" $ do it "isSubmapOfBy (<) not refl" $ property $ \(m :: DivMap Int) -> size m > 0 ==> not (isSubmapOfBy (<) m m) it "isSubmapOfBy (<) m (map (+1) m)" $ property $ \(m :: DivMap Int) -> isSubmapOfBy (<) m (map (+1) m) describe "isProperSubmapOf" $ do it "submap with less size" $ property $ \(m1 :: DivMap Int) m2 -> (m1 `isProperSubmapOf` m2) `shouldBe` (size m1 < size m2 && m1 `isSubmapOf` m2) it "div100 is proper submap of div1000" $ div100 `isProperSubmapOf` div1000 it "div1000 is not proper submap of div100" $ not (div1000 `isSubmapOf` div100) describe "isProperSubmapOfBy" $ it "not (isProperSubmapOfBy (<) m (map (+1) m))" $ property $ \(m :: DivMap Int) -> not (isProperSubmapOfBy (<) m (map (+1) m)) describe "lookupMin" $ do it "antichain" $ property $ \(m :: DivMap Int) -> isAntichain (fmap fst (lookupMin m)) let less a b = a `leq` b && not (b `leq` a) it "no element less" $ property $ \(m :: DivMap Int) -> shouldSatisfy (fmap fst (lookupMin m)) $ \mins -> all (\k -> not (any (`less` k) (keys m))) mins describe "lookupMax" $ do let greater a b = b `leq` a && not (a `leq` b) it "antichain" $ property $ \(m :: DivMap Int) -> isAntichain (fmap fst (lookupMax m)) it "no element greater" $ property $ \(m :: DivMap Int) -> shouldSatisfy (fmap fst (lookupMax m)) $ \mins -> all (\k -> not (any (`greater` k) (keys m))) mins describe "type class instances" $ do describe "Functor" $ describe "fmap" $ do it "fmap id = id" $ property $ \(m :: DivMap Int) -> fmap id m `shouldBe` m let f = (+1) let g = (*2) it "fmap f . fmap g = fmap (f . g)" $ property $ \(m :: DivMap Int) -> fmap f (fmap g m) `shouldBe` fmap (f . g) m it "fmaps over all entries" $ property $ \(m :: DivMap Int) k -> lookup k (fmap (+1) m) `shouldBe` (+1) <$> lookup k m describe "Foldable" $ do describe "foldMap" $ do it "getSum (foldMap (const (Sum 1))) = size" $ property $ \(m :: DivMap Int) -> getSum (foldMap (const (Sum 1)) m) `shouldBe` size m it "foldMap f = fold . fmap f" $ property $ \(m :: DivMap Int) -> foldMap Sum m `shouldBe` fold (fmap Sum m) describe "foldr" $ do let f = (-) let z = 9000 it "foldr f z m = appEndo (foldMap (Endo . f) m ) z" $ property $ \(m :: DivMap Int) -> foldr f z m `shouldBe` appEndo (foldMap (Endo . f) m ) z describe "foldl" $ do let f = (-) let z = 9000 it "foldl f z m = appEndo (getDual (foldMap (Dual . Endo . flip f) m)) z" $ property $ \(m :: DivMap Int) -> foldl f z m `shouldBe` appEndo (getDual (foldMap (Dual . Endo . flip f) m)) z describe "fold" $ it "fold = foldMap id" $ property $ \(m :: DivMap Int) -> let m' = coerce m :: DivMap (Sum Int) in fold m' `shouldBe` foldMap id m' describe "Traversable" $ do describe "traverse" $ do it "traverse (const (Const (Sum 1))) = size" $ property $ \(m :: DivMap Int) -> getSum (getConst (traverse (const (Const (Sum 1))) m)) `shouldBe` size m let f n = replicate (min 2 n) n let g n = if odd n then Just n else Nothing let t = Maybe.listToMaybe it "naturality" $ property $ \(m :: DivMap Int) -> t (traverse f m) `shouldBe` traverse (t . f) m it "identity" $ property $ \(m :: DivMap Int) -> traverse Identity m `shouldBe` Identity m it "composition" $ property $ \(m :: DivMap Int) -> traverse (Compose . fmap g . f) m `shouldBe` (Compose . fmap (traverse g) . traverse f) m describe "sequenceA" $ do let t = Maybe.listToMaybe it "naturality" $ property $ \(m :: DivMap [Int]) -> t (sequenceA m) `shouldBe` sequenceA (fmap t m) it "identity" $ property $ \(m :: DivMap Int) -> sequenceA (fmap Identity m) `shouldBe` Identity m it "composition" $ property $ \(m :: DivMap (Maybe (Maybe Int))) -> sequenceA (fmap Compose m) `shouldBe` (Compose . fmap sequenceA . sequenceA) m it "fmap = fmapDefault" $ property $ \(m :: DivMap Int) -> fmap (+1) m `shouldBe` fmapDefault (+1) m it "foldMap = foldMapDefault" $ property $ \(m :: DivMap Int) -> foldMap Sum m `shouldBe` foldMapDefault Sum m