{-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE TypeApplications #-} {-# Language CPP #-} {-# Language DataKinds #-} {-# Language ExplicitForAll #-} {-# Language FlexibleInstances #-} {-# Language LambdaCase #-} {-# Language OverloadedStrings #-} {-# Language ScopedTypeVariables #-} {-# Language StandaloneDeriving #-} {-# Language TypeFamilies #-} {-# Language TypeOperators #-} {-# OPTIONS_GHC -fno-warn-orphans #-} #if __GLASGOW_HASKELL__ >= 805 {-# Language NoStarIsType #-} #endif module Test.Vector ( vecTests , SomeVector(..) , genSomeVector , genVectorOfLength , genOrdering , orderingEndomorphisms , orderingToStringFuns ) where import Data.Functor.Const (Const(..)) import Data.Functor.WithIndex (imap) import Data.Foldable.WithIndex (ifoldMap) import Data.Maybe (isJust) import qualified Data.List as List import qualified Data.Parameterized.Context as Ctx import Data.Parameterized.Fin import Data.Parameterized.NatRepr import Data.Parameterized.Some import Data.Parameterized.Vector import Data.Semigroup import GHC.TypeLits (KnownNat) import Hedgehog import qualified Hedgehog.Gen as HG import Hedgehog.Range import Numeric.Natural (Natural) import Prelude hiding (take, reverse, length) import qualified Prelude as P import Test.Fin (genFin) import Test.Tasty import Test.Tasty.Hedgehog import Test.Context (genSomePayloadList, mkUAsgn) #if __GLASGOW_HASKELL__ >= 806 import qualified Hedgehog.Classes as HC import Test.Tasty.HUnit (assertBool, testCase) #endif data SomeVector a = forall n. SomeVector (Vector n a) instance Show a => Show (SomeVector a) where show (SomeVector v) = show v genVectorOfLength :: (Monad m) => NatRepr n -> GenT m a -> GenT m (Vector (n + 1) a) genVectorOfLength n genElem = do let w = widthVal n l <- HG.list (linear (w + 1) (w + 1)) genElem case testLeq (knownNat @1) (incNat n) of Nothing -> error "testLeq in genSomeVector" Just LeqProof -> case fromList (incNat n) l of Just v -> return v Nothing -> error ("fromList failure for size " <> show w) genSomeVector :: (Monad m) => GenT m a -> GenT m (SomeVector a) genSomeVector genElem = do Some len <- mkNatRepr <$> HG.integral (linear 0 (99 :: Natural)) SomeVector <$> genVectorOfLength len genElem genVectorKnownLength :: (1 <= n, KnownNat n, Monad m) => GenT m a -> GenT m (Vector n a) genVectorKnownLength genElem = do let n = knownNat w = widthVal n l <- HG.list (constant w w) genElem case fromList n l of Just v -> return v Nothing -> error ("fromList failure for size " <> show w) genOrdering :: Monad m => GenT m Ordering genOrdering = HG.element [ LT, EQ, GT ] instance Show (a -> b) where show _ = "unshowable" -- Used to test e.g., 'fmap (g . f) = fmap g . fmap f' and 'imap (const f) = -- fmap f'. orderingEndomorphisms :: [Ordering -> Ordering] orderingEndomorphisms = [ const EQ , id , \case EQ -> EQ LT -> GT GT -> LT , \case LT -> EQ EQ -> GT GT -> LT ] -- | Used to test ifoldMap. orderingToStringFuns :: [ Ordering -> String ] orderingToStringFuns = [ const "s" , show ] prop_reverse100 :: Property prop_reverse100 = property $ do SomeVector v <- forAll $ genSomeVector genOrdering case testLeq (knownNat @1) (length v) of Nothing -> pure () Just LeqProof -> v === (reverse $ reverse v) prop_reverseSingleton :: Property prop_reverseSingleton = property $ do l <- (:[]) <$> forAll genOrdering Just v <- return $ fromList (knownNat @1) l v === reverse v prop_splitJoin :: Property prop_splitJoin = property $ do let n = knownNat @5 v <- forAll $ genVectorKnownLength @(5 * 5) genOrdering v === (join n $ split n (knownNat @5) v) prop_cons :: Property prop_cons = property $ do let n = knownNat @20 w = widthVal n l <- forAll $ HG.list (constant w w) genOrdering x <- forAll genOrdering (cons x <$> fromList n l) === fromList (incNat n) (x:l) prop_snoc :: Property prop_snoc = property $ do let n = knownNat @20 w = widthVal n l <- forAll $ HG.list (constant w w) genOrdering x <- forAll genOrdering (flip snoc x <$> fromList n l) === fromList (incNat n) (l ++ [x]) prop_snocUnsnoc :: Property prop_snocUnsnoc = property $ do let n = knownNat @20 w = widthVal n l <- forAll $ HG.list (constant w w) genOrdering x <- forAll genOrdering (fst . unsnoc . flip snoc x <$> fromList n l) === Just x prop_generate :: Property prop_generate = property $ do let n = knownNat @55 w = widthVal n funs :: [ Int -> Ordering ] -- some miscellaneous functions to generate Vector values funs = [ const EQ , \i -> if i < 10 then LT else if i > 15 then GT else EQ , \i -> if i == 0 then EQ else GT ] f <- forAll $ HG.element funs Just (generate n (f . widthVal)) === fromList (incNat n) (map f [0..w]) prop_unfold :: Property prop_unfold = property $ do let n = knownNat @55 w = widthVal n funs :: [ Ordering -> (Ordering, Ordering) ] -- some miscellaneous functions to generate Vector values funs = [ const (EQ, EQ) , \case LT -> (LT, GT) GT -> (GT, LT) EQ -> (EQ, EQ) ] f <- forAll $ HG.element funs o <- forAll $ HG.element [EQ, LT, GT] Just (unfoldr n f o) === fromList (incNat n) (P.take (w + 1) (List.unfoldr (Just . f) o)) prop_toFromAssignment :: Property prop_toFromAssignment = property $ do vals <- forAll genSomePayloadList Some a <- return $ mkUAsgn vals let sz = Ctx.size a case Ctx.viewSize sz of Ctx.ZeroSize -> pure () Ctx.IncSize _ -> let a' = toAssignment sz (\_idx val -> Const val) (fromAssignment Some a) in do assert $ isJust $ testEquality (Ctx.sizeToNatRepr sz) (Ctx.sizeToNatRepr (Ctx.size a')) viewSome (\lastElem -> assert $ isJust $ testEquality (a Ctx.! Ctx.lastIndex sz) lastElem) (getConst (a' Ctx.! Ctx.lastIndex sz)) prop_fmapId :: Property prop_fmapId = property $ do SomeVector v <- forAll $ genSomeVector genOrdering fmap id v === v prop_fmapCompose :: Property prop_fmapCompose = property $ do SomeVector v <- forAll $ genSomeVector genOrdering f <- forAll $ HG.element orderingEndomorphisms g <- forAll $ HG.element orderingEndomorphisms fmap (g . f) v === fmap g (fmap f v) prop_iterateNRange :: Property prop_iterateNRange = property $ do Some len <- mkNatRepr <$> forAll (HG.integral (linear 0 (99 :: Natural))) toList (iterateN len (+1) 0) === [0..(natValue len)] prop_indicesOfRange :: Property prop_indicesOfRange = property $ do SomeVector v <- forAll $ genSomeVector genOrdering toList (fmap (viewFin natValue) (indicesOf v)) === [0..(natValue (length v) - 1)] prop_imapConst :: Property prop_imapConst = property $ do f <- forAll $ HG.element orderingEndomorphisms SomeVector v <- forAll $ genSomeVector genOrdering imap (const f) v === fmap f v prop_ifoldMapConst :: Property prop_ifoldMapConst = property $ do f <- forAll $ HG.element orderingToStringFuns SomeVector v <- forAll $ genSomeVector genOrdering ifoldMap (const f) v === foldMap f v prop_imapConstIndicesOf :: Property prop_imapConstIndicesOf = property $ do SomeVector v <- forAll $ genSomeVector genOrdering imap const v === indicesOf v prop_imapElemAt :: Property prop_imapElemAt = property $ do SomeVector v <- forAll $ genSomeVector genOrdering imap (\i _ -> viewFin (\x -> elemAt x v) i) v === v prop_OrdEqVectorIndex :: Property prop_OrdEqVectorIndex = property $ do i <- forAll $ genFin (knownNat @10) j <- forAll $ genFin (knownNat @10) (i == j) === (compare i j == EQ) -- We use @Ordering@ just because it's simple vecTests :: IO TestTree vecTests = testGroup "Vector" <$> return [ testPropertyNamed "reverse100" "prop_reverse100" prop_reverse100 , testPropertyNamed "reverseSingleton" "prop_reverseSingleton" prop_reverseSingleton , testPropertyNamed "split-join" "prop_splitJoin" prop_splitJoin -- @cons@ is the same for vectors or lists , testPropertyNamed "cons" "prop_cons" prop_cons -- @snoc@ is like appending to a list , testPropertyNamed "snoc" "prop_snoc" prop_snoc -- @snoc@ and @unsnoc@ are inverses , testPropertyNamed "snoc/unsnoc" "prop_snocUnsnoc" prop_snocUnsnoc -- @generate@ is like mapping a function over indices , testPropertyNamed "generate" "prop_generate" prop_generate -- @unfold@ works like @unfold@ on lists , testPropertyNamed "unfold" "prop_unfold" prop_unfold -- Converting to and from assignments preserves size and last element , testPropertyNamed "to-from-assignment" "prop_toFromAssignment" prop_toFromAssignment -- NOTE: We don't use hedgehog-classes here, because the way the types work -- would require this to only tests vectors of some fixed size. -- -- Also, for 'fmap-compose', hedgehog-classes only tests two fixed functions -- over integers. , testPropertyNamed "fmap-id" "prop_fmapId" prop_fmapId , testPropertyNamed "fmap-compose" "prop_fmapCompose" prop_fmapCompose , testPropertyNamed "iterateN-range" "prop_iterateNRange" prop_iterateNRange , testPropertyNamed "indicesOf-range" "prop_indicesOfRange" prop_indicesOfRange , testPropertyNamed "imap-const" "prop_imapConst" prop_imapConst , testPropertyNamed "ifoldMap-const" "prop_ifoldMapConst" prop_ifoldMapConst , testPropertyNamed "imap-const-indicesOf" "prop_imapConstIndicesOf" prop_imapConstIndicesOf , testPropertyNamed "imap-elemAt" "prop_imapElemAt" prop_imapElemAt , testPropertyNamed "Ord-Eq-VectorIndex" "prop_OrdEqVectorIndex" prop_OrdEqVectorIndex #if __GLASGOW_HASKELL__ >= 806 -- Test a few different sizes since the types force each test to use a -- specific size vector. , testCase "Eq-Vector-laws-1" $ assertBool "Eq-Vector-laws-1" =<< HC.lawsCheck (HC.eqLaws (genVectorKnownLength @1 genOrdering)) , testCase "Eq-Vector-laws-10" $ assertBool "Eq-Vector-laws-10" =<< HC.lawsCheck (HC.eqLaws (genVectorKnownLength @10 genOrdering)) , testCase "Show-Vector-laws-1" $ assertBool "Show-Vector-laws-1" =<< HC.lawsCheck (HC.showLaws (genVectorKnownLength @1 genOrdering)) , testCase "Show-Vector-laws-10" $ assertBool "Show-Vector-laws-10" =<< HC.lawsCheck (HC.showLaws (genVectorKnownLength @10 genOrdering)) , testCase "Foldable-Vector-laws-1" $ assertBool "Foldable-Vector-laws-1" =<< HC.lawsCheck (HC.foldableLaws (genVectorKnownLength @1)) , testCase "Foldable-Vector-laws-10" $ assertBool "Foldable-Vector-laws-10" =<< HC.lawsCheck (HC.foldableLaws (genVectorKnownLength @10)) , testCase "Traversable-Vector-laws-1" $ assertBool "Traversable-Vector-laws-1" =<< HC.lawsCheck (HC.traversableLaws (genVectorKnownLength @1)) , testCase "Traversable-Vector-laws-10" $ assertBool "Traversable-Vector-laws-10" =<< HC.lawsCheck (HC.traversableLaws (genVectorKnownLength @10)) #endif ]