{-# LANGUAGE CPP #-} #ifndef MIN_VERSION_GLASGOW_HASKELL #define MIN_VERSION_GLASGOW_HASKELL(a,b,c,d) 0 #endif -- MIN_VERSION_GLASGOW_HASKELL was introduced in GHC 7.10 #if MIN_VERSION_GLASGOW_HASKELL(7,10,0,0) #else {-# LANGUAGE OverlappingInstances #-} #endif -- | This module provides a generalized implementation of data types à la carte -- [1]. It supports (higher-order) functors with 0 or more functorial parameters -- and additional non-functorial parameters, all with a uniform interface. -- -- \[1\] W. Swierstra. Data Types à la Carte. -- /Journal of Functional Programming/, 18(4):423-436, 2008, -- <http://dx.doi.org/10.1017/S0956796808006758>. -- -- (This module is preferably used with the GHC extensions @DataKinds@ and -- @PolyKinds@.) -- -- = Usage -- -- Compared to traditional data types à la carte, an extra poly-kinded parameter -- has been added to ':+:' and to the parameters of ':<:'. Standard data types à -- la carte is obtained by setting this parameter to @()@. That gives us the -- following type for 'Inl': -- -- @`Inl` :: h1 () a -> (h1 `:+:` h2) () a@ -- -- Here, @h1 ()@ and @(h1 `:+:` h2) ()@ are functors. -- -- By setting the extra parameter to a functor @f :: * -> *@, we obtain this -- type: -- -- @`Inl` :: h1 f a -> (h1 `:+:` h2) f a@ -- -- This makes @h1@ and @(h1 `:+:` h2)@ higher-order functors. -- -- Finally, by setting the parameter to a type-level pair of functors -- @'(f,g) :: (* -> *, * -> *)@, we obtain this type: -- -- @`Inl` :: h1 '(f,g) a -> (h1 `:+:` h2) '(f,g) a@ -- -- This makes @h1@ and @(h1 `:+:` h2)@ higher-order bi-functors. -- -- Alternatively, we can represent all three cases above using heterogeneous -- lists of functors constructed using @'(,)@ and terminated by @()@: -- -- @ -- `Inl` :: h1 () a -> (h1 `:+:` h2) () a -- functor -- `Inl` :: h1 '(f,()) a -> (h1 `:+:` h2) '(f,()) a -- higher-order functor -- `Inl` :: h1 '(f,'(g,())) a -> (h1 `:+:` h2) '(f,'(g,())) a -- higher-order bi-functor -- @ -- -- This view is taken by the classes 'HFunctor' and 'HBifunctor'. An 'HFunctor' -- takes a parameter of kind @(* -> *, k)@; i.e. it has /at least/ one -- functorial parameter. A 'HBiFunctor' takes a parameter of kind -- @(* -> *, (* -> *, k))@; i.e. it has /at least/ two functorial parameters. -- -- = Aliases for parameter lists -- -- To avoid ugly types such as @'(f,'(g,()))@, this module exports the synonyms -- 'Param0', 'Param1', 'Param2', etc. for parameter lists up to size 4. These -- synonyms allow the module to be used without the @DataKinds@ extension. -- -- = Extra type parameters -- -- Recall that an 'HFunctor' takes a parameter of kind @(* -> *, k)@, and an -- 'HBifunctor' takes a parameter of kind @(* -> *, (* -> *, k))@. Since @k@ is -- polymorphic, it means that it is possible to add extra parameters in place of -- @k@. -- -- For example, a user can define the following type representing addition in -- some language: -- -- @ -- data Add fs a where -- Add :: (`Num` a, pred a) => f a -> f a -> Add (`Param2` f pred) a -- -- instance `HFunctor` Add where -- `hfmap` f (Add a b) = Add (f a) (f b) -- @ -- -- Here, @Add@ has a functorial parameter @f@, and an extra non-functorial -- parameter @pred@ that provides a constraint for the type @a@. -- -- An obvious alternative would have been to just make @pred@ a separate -- parameter to @Add@: -- -- @ -- data Add pred fs a where -- Add :: (`Num` a, pred a) => f a -> f a -> Add pred (`Param1` f) a -- -- instance `HFunctor` (Add pred) where -- `hfmap` f (Add a b) = Add (f a) (f b) -- @ -- -- However, this has the disadvantage of being hard to use together with the -- ':<:' class. For example, we might want to define the following \"smart -- constructor\" for @Add@: -- -- @ -- mkAdd :: (`Num` a, pred a, Add pred `:<:` h) => f a -> f a -> h (`Param1` f) a -- mkAdd a b = `inj` (Add a b) -- @ -- -- Unfortunately, the above type is ambiguous, because @pred@ is completely -- free. Assuming that @h@ is a type of the form @(... `:+:` Add `Show` `:+:` ...)@, -- we would like to infer @(pred ~ `Show`)@, but this would require extra -- machinery, such as a type family that computes @pred@ from @h@. -- -- By putting @pred@ in the parameter list, we avoid the above problem. We also -- get the advantage that the same @pred@ parameter is distributed to all types -- in a sum constructed using ':+:'. This makes it easier to, for example, -- change the @pred@ parameter uniformly throughout an expression. module Data.ALaCarte where -- | Coproducts data (h1 :+: h2) fs a = Inl (h1 fs a) | Inr (h2 fs a) #if __GLASGOW_HASKELL__>=708 deriving (Functor) #endif infixr :+: -- | A constraint @f `:<:` g@ expresses that the signature @f@ is subsumed by -- @g@, i.e. @f@ can be used to construct elements in @g@. class sub :<: sup where inj :: sub fs a -> sup fs a prj :: sup fs a -> Maybe (sub fs a) instance {-# OVERLAPPING #-} (f :<: f) where inj = id prj = Just instance {-# OVERLAPPING #-} (f :<: (f :+: g)) where inj = Inl prj (Inl f) = Just f prj _ = Nothing instance {-# OVERLAPPING #-} (f :<: h) => (f :<: (g :+: h)) where inj = Inr . inj prj (Inr h) = prj h prj _ = Nothing -- | Higher-order functors class HFunctor h where -- | Higher-order 'fmap' hfmap :: (forall b . f b -> g b) -> h '(f,fs) a -> h '(g,fs) a instance (HFunctor h1, HFunctor h2) => HFunctor (h1 :+: h2) where hfmap f (Inl i) = Inl (hfmap f i) hfmap f (Inr i) = Inr (hfmap f i) -- | Higher-order bi-functors class HFunctor h => HBifunctor h where -- | Higher-order \"bimap\" hbimap :: (Functor f, Functor g) => (forall b . f b -> g b) -> (forall b . i b -> j b) -> h '(f,'(i,fs)) a -> h '(g,'(j,fs)) a instance (HBifunctor h1, HBifunctor h2) => HBifunctor (h1 :+: h2) where hbimap f g (Inl i) = Inl (hbimap f g i) hbimap f g (Inr i) = Inr (hbimap f g i) -------------------------------------------------------------------------------- -- * Parameter lists -------------------------------------------------------------------------------- -- | Empty parameter list type Param0 = () -- | Singleton parameter list type Param1 a = '(a,Param0) -- | Two-element parameter list type Param2 a b = '(a, Param1 b) -- | Three-element parameter list type Param3 a b c = '(a, Param2 b c) -- | Four-element parameter list type Param4 a b c d = '(a, Param3 b c d)