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1 Introduction

The Ωmega interpreter is styled after the Hugs Haskell Interpreter (or GHCi). In fact, users of
Hugs will find many similarities, and this is intentional. Like Hugs, the Ωmega interpreter is a
read-typecheck-eval-print loop. It can load whole files, and the top-level loop allows the user to
experiment by typing expressions to be evaluated, and by querying the program environment.

The Ωmega syntax is based upon the syntax of Haskell. If you’re unsure of what syntax to
use, a best first approximation is to use Haskell syntax. It works most of the time. While clearly
descended from Haskell, Ωmega has several important syntactic and semantic differences. The
purpose of this manual is to identify the differences and give examples of the differences so users
can quickly learn them. These differences include:

• Ωmega supports the introduction of Generalized Algebraic Datatypes. It does this by gen-
eralizing the data declaration to include explicit types for every constructor (Section 7).

• Ωmega adds the ability to introduce new types, and new kinds to classify these types (Section
11).

• Ωmega allows users to write functions at the type level, and to use these functions in the
type of functions at the value level (Section 18).

• Ωmega is strict while Haskell is lazy. But Ωmega has an experimental explicit laziness
annotation (Section 17).

• Ωmega does not support Haskell’s class system. Because of this Ωmega supports the do

syntax using another mechanism (Section 6).

• Ωmega has only a fixed set of infix operators, which cannot be extended (Section 3).

• Ωmega only supports fully applied type synonyms (Section 5).

• Ωmega has a very primitive module system (Section 4).

• Ωmega suports a notion of anonymous existential types (Section 10).
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• Ωmega has an experimental implementation of Pitts and Gabbay’s freshness mechanism
(Section 25).
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Type :: Kind

Monad :: (*0 ~> *0) ~> *0

Record :: Row Tag *0 ~> *0

RCons ::

e ~> f ~> Row e f ~> Row e f

RNil :: Row e f

Row :: a ~> c ~> *1

HiddenLabel :: *0

Equal :: a ~> a ~> *0

Nat’ :: Nat ~> *0

S :: Nat ~> Nat

Z :: Nat

Nat :: *1

and :: Prop ~> Prop ~> Prop

Success :: Prop

Prop :: *1

Maybe :: *0 ~> *0

Ordering :: *0

Bool :: *0

DiffLabel :: Tag ~> Tag ~> *0

Label :: Tag ~> *0

Tag :: *1

Parser :: *0 ~> *0

Ptr :: *0 ~> *0

IO :: *0 ~> *0

Symbol :: *0

Code :: *0 ~> *0

ChrSeq :: *0

Float :: *0

Char :: *0

Int :: *0

[] :: *0 ~> *0

(,) :: *0 ~> *0 ~> *0

() :: *0

(->) :: *0 ~> *0 ~> *0

Atom :: a ~> *0

(+) :: *0 ~> *0 ~> *0

(!=) :: a ~> a ~> *0

DiffLabel :: Tag ~> Tag ~> *0

String :: *0

(==) :: a ~> a ~> Prop

Figure 1: Predefined types and their kinds.
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Value :: Type

(+) :: Int -> Int -> Int

(*) :: Int -> Int -> Int

(-) :: Int -> Int -> Int

div :: Int -> Int -> Int

rem :: Int -> Int -> Int

mod :: Int -> Int -> Int

negate :: Int -> Int

(<) :: Int -> Int -> Bool

(<=) :: Int -> Int -> Bool

(>) :: Int -> Int -> Bool

(>=) :: Int -> Int -> Bool

(==) :: Int -> Int -> Bool

(/=) :: Int -> Int -> Bool

(#+) :: Float -> Float -> Float

(#*) :: Float -> Float -> Float

(#-) :: Float -> Float -> Float

(#/) :: Float -> Float -> Float

negateFloat :: Float -> Float

(#<) :: Float -> Float -> Bool

(#<=) :: Float -> Float -> Bool

(#>) :: Float -> Float -> Bool

(#>=) :: Float -> Float -> Bool

(#==) :: Float -> Float -> Bool

(#/=) :: Float -> Float -> Bool

intToFloat :: Int -> Float

round :: Float -> Int

truncate :: Float -> Int

eqStr :: [Char] -> [Char] -> Bool

chr :: Int -> Char

ord :: Char -> Int

putStr :: [Char] -> IO ()

getStr :: IO [Char]

(&&) :: Bool -> Bool -> Bool

(||) :: Bool -> Bool -> Bool

not :: Bool -> Bool

True :: Bool

False :: Bool

(:) :: a -> [a] -> [a]

null :: [a] -> Bool

[] :: [a]

(++) :: [a] -> [a] -> [a]

(,) :: a -> b -> (a,b)

Nothing :: Maybe a

Just :: a -> Maybe a

show :: a -> [Char]

runParser :: Parser a -> [Char] -> Maybe a

(<|>) :: Parser a -> Parser a -> Parser a

(<?>) :: Parser a -> [Char] -> Parser a

returnParser :: a -> Parser a

bindParser :: Parser a -> (a -> Parser b) -> Parser b

failParser :: [Char] -> Parser a

mimic :: (a -> b) -> a -> b

strict :: a -> a

trace :: [Char] -> a -> a

compare :: a -> a -> Ordering

error :: [Char] -> a

fresh :: Char -> Symbol

swap :: Symbol -> Symbol -> a -> a

symbolEq :: Symbol -> Symbol -> Bool

sameLabel ::

Label a -> Label b -> ((Equal a b)+(DiffLabel a b))

freshLabel :: IO HiddenLabel

newLabel :: [Char] -> HiddenLabel

LabelNotEq :: Ordering -> DiffLabel a b

freshen :: a -> (a,[(Symbol,Symbol)])

run :: Code a -> a

lift :: a -> Code a

returnIO :: a -> IO a

bindIO :: IO a -> (a -> IO b) -> IO b

failIO :: [Char] -> IO a

handleIO :: IO a -> ([Char] -> IO a) -> IO a

newPtr :: IO (Ptr a)

readPtr :: Ptr a -> IO (Maybe a)

writePtr :: Ptr a -> a -> IO ()

nullPtr :: Ptr a -> IO Bool

initPtr :: Ptr a -> b -> IO (Equal a b)

samePtr :: Ptr a -> Ptr b -> IO (Equal a b)

($) :: (a -> b) -> a -> b

(.) :: (a -> b) -> (c -> a) -> c -> b

parseChar :: Parser Char

parseInt :: Parser Int

Figure 2: Predefined functions and values.
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2 Primitive and Predefined Types and Values

Ωmega supports a number of built in types. In Figure 1 they are listed along with their kinds.
Ωmega also implements a number of primitive functions and values over the predefined types. In
Figure 2 they are listed along with their types. These figures are generated when a distribution
(including this manual) is built, and should be up-to date. Compare the version and build date
of your Ωmega interpreter with the information on the license page of this manual to see if this
manual is up-to-date. In a future version of Ωmega we hope to have a more comprehensive set of
primitives.

The following types are predefined. All other types listed in Figure 1 are primitive, abstract,
builtin types. The predefined types behave as if they were defined as follows:

data Int = primitive

data Char = primitive

data Float = primitive

data ChrSeq = primitive

data Code (x::*0) = primitive

data Symbol = primitive

data IO (x::*0) = primitive

data Ptr (x::*0) = primitive

data Parser (x::*0) = primitive

kind Tag = primitive

data Label (t :: Tag) = primitive

prop DiffLabel (t :: Tag) (t :: Tag) = primitive

data Bool:: *0 where

True:: Bool

False:: Bool

data Ordering:: *0 where

EQ:: Ordering

LT:: Ordering

GT:: Ordering

data Maybe:: *0 ~> *0 where

Just :: a -> Maybe a

Nothing :: Maybe a

data Prop :: *1 where

Success :: Prop

and:: Prop ~> Prop ~> Prop

{and Success x } = x

data Nat :: *1 where

Z :: Nat

S :: Nat ~> Nat

deriving Nat(t)

prop Nat’ :: Nat ~> *0 where

Z:: Nat’ Z

S:: forall (a:: Nat) . Nat’ a -> Nat’ (S a)

deriving Nat(v)

data Equal:: a ~> a ~> *0 where

Eq:: Equal x x

data HiddenLabel :: *0 where

HideLabel:: Label t -> HiddenLabel
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Operator :: Type

(*) :: Int -> Int -> Int

(#*) :: Float -> Float -> Float

(#/) :: Float -> Float -> Float

(+) :: Int -> Int -> Int

(-) :: Int -> Int -> Int

(#+) :: Float -> Float -> Float

(#-) :: Float -> Float -> Float

(:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

(==) :: Int -> Int -> Bool

(/=) :: Int -> Int -> Bool

(<) :: Int -> Int -> Bool

(<=) :: Int -> Int -> Bool

(>) :: Int -> Int -> Bool

(>=) :: Int -> Int -> Bool

(#==) :: Float -> Float -> Bool

(#/=) :: Float -> Float -> Bool

(#<) :: Float -> Float -> Bool

(#<=) :: Float -> Float -> Bool

(#>) :: Float -> Float -> Bool

(#>=) :: Float -> Float -> Bool

(&&) :: Bool -> Bool -> Bool

(||) :: Bool -> Bool -> Bool

(<|>) :: Parser a -> Parser a -> Parser a

($) :: (a -> b) -> a -> b

(.) :: (a -> b) -> (c -> a) -> c -> b

Figure 3: The fixed set of infix operators and their types.

data Row :: a ~> b ~> *1 where

RNil :: Row x y

RCons :: x ~> y ~> Row x y ~> Row x y

deriving Record(r)

data Record :: Row Tag *0 ~> *0 where

RecNil :: Record RNil

RecCons :: Label a -> b -> Record r -> Record (RCons a b r)

deriving Record()

data Monad :: (*0 ~> *0) ~> *0 where

Monad :: forall (m:: *0 ~> *0) .

((forall a . a -> m a)) ->

((forall a b . (m a) -> (a -> m b) -> m b)) ->

((forall a . String -> m a)) ->

Monad m

data [] a = [] | (:) a [a]

3 Infix Operators

In Ωmega there are a fixed number of infix operators. The current implementation precludes
dynamically adding new infix operators. The infix operators can be found in Figure 3.

4 Simple Module System

The module system in Ωmega is very primitive. It works by specifying a string which is the name
of an Ωmega file. It is followed by an optional parenthesized list of import items. The file is
loaded, and if the import items are present in the file, those import items are imported into the
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current context. An import item is either a name or a syntax item. A syntax item names one of
the extensible syntactical extensions (see Section 22). A syntax item has the form:

"syntax" ( "List" | "LeftList" | "Record" | "LeftRecord" | "Pair" | "LeftPair"

| "Nat" | "Tick" | "Unit" | "Item" ) "(" id ")"

Some examples are illustrated below.

import "LangPrelude.prg"

(head,tail,lookup,member,fst,snd,Monad,maybeM)

imports only the names listed from the LangPrelude.prg file.
If the parenthesized import list is not present, all the names and syntax extensions defined in

the file are imported. An Ωmega program can contain multiple imports.

import "fileAll"

import "generic.prg" (name, syntax List(i), syntax Nat(n))

Like Haskell, Ωmega has two name spaces. One for values and another for types and kinds.
One drawback of the module system is that if a name is listed in the import list, then that name
is imported into both name spaces if it exists. There is currently no way to be selective.

5 Type Synonyms

Ωmega supports both parameterized and non-parameterized type synomyms. For example:

type String = [Char]

type Env t = [(String,t)]

Every use of a type synonym must be fully applied to all its type arguments. At type checking
time a type synonym is fully expanded.

6 Monads and the do Syntax

Since Ωmega does not have a class system, it uses an alternate mechanism to support the do

syntax for monads. Typing a do expression involves computing the type of the variables return,
fail, and bind in the scope where the do expression occurs. The typing rule is:

Γ(x, d) ⊢ e2 :: m c

Γ ⊢ e1 :: m d

Γ ⊢ fail :: ∀ a . String → m a

Γ ⊢ bind :: ∀ a b . m a→ (a→ m b)→ m b

Γ ⊢ return :: ∀ a . a→ m a

Γ ⊢ do {x← e1; e2} :: m c

A Monad in Ωmega is just an ordinary algebraic datatype with constructor Monad and three
polymorphic functions as components, return, bind, and fail. Its definition can be found in
Section 2 as one of the predefined types. Some sample monad declarations are:
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maybeM = (Monad Just bind fail)

where return x = Just x

fail s = Nothing

bind Nothing g = Nothing

bind (Just x) g = g x

listM = (Monad unit bind fail)

where unit x = [x]

fail s = []

bind [] f = []

bind (x:xs) f = f x ++ bind xs f

ioM = Monad returnIO bindIO failIO

data St st a = St (st -> (a,st))

stateM = (Monad unit bind fail)

where unit a = St(\ st -> (a,st))

bind (St f) g = St h

where h st = case f st of

(a,st’) ->

case g a of

(St j) -> j st’

fail s = error ("Fail in state monad: "++s)

runstate n (St f) = f n

getstate = St f where f s = (s,s)

setstate n = St f where f s = ((),n)

Given any expression (m::Monad m), the monad declaration (monad m) is syntactic sugar for
the pattern based declaration (Monad return bind fail) = m. Which introduces bindings for
the monad functions (return, bind, and fail) into the local scope. To use the do syntax import
the names for return, bind, and fail into the current context either by defining them or using
the monad declaration.

d1 = do { x <- Just 4; return(x+1) }

where monad maybeM

d2 = runstate 0 (do { setstate 4; x <- getstate; return(x+1) })

where (Monad return bind fail) = stateM

d3 = runstate 5 (do { a <- getstate; setstate 3; x <- getstate; return(x+a) })

where monad stateM

To import a monad into the scope of a multi-clause function definition without polluting the
global scope, define the function using a where clause. Place a helper function and the monad

declaration in the same where clause, and equate the function (you really want to define) to the
helper function.

data Rep:: *0 ~> *0 where

Int:: Rep Int

Char:: Rep Char

Prod:: Rep a -> Rep b -> Rep (a,b)

Arr:: Rep a -> Rep b -> Rep (a -> b)

List:: Rep a -> Rep [a]

test = help where

help :: Rep a -> Rep b -> Maybe(Equal a b)

help Int Int = Just Eq

help Char Char = Just Eq

help (Prod a b) (Prod m n) =

do { Eq <- help a m
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; Eq <- help b n

; return Eq }

help (Arr a b) (Arr m n) =

do { Eq <- help a m

; Eq <- help b n

; return Eq }

help (List a) (List b) =

do { Eq <- help a b; return Eq }

help _ _ = Nothing

monad maybeM

7 Generalized Algebraic Datatypes

We assume the reader has a certain familiarity with Algebraic Datatypes (ADTs). In particular
that values of ADTs are constructed by constructors and that they are taken apart by the use of
pattern matching. Consider

data Tree a

= Fork (Tree a) (Tree a)

| Node a

| Tip

This declaration defines the polymorphic Tree type constructor. Example tree types include
(Tree Int) and (Tree Bool). Note how the constructor functions (Fork, Node) and constants
(Tip) are given polymorphic types.

Fork :: forall a . Tree a -> Tree a -> Tree a

Node :: forall a . a -> Tree a

Tip :: forall a . Tree a

When we define a parameterized algebraic datatype, the formation rules enforce the following
restriction. The range of every constructor function, and the type of every constructor constant
must be a polymorphic instance of the new type constructor being defined. Notice how the
constructors for Tree all have range (Tree a) with a polymorphic type variable a. Generalized
Algebraic Datatypes (GADTs) remove this restriction. Since the range of the constructors of an
ADT are only implicitly given (as the type to the left of the equal sign in the ADT definition), a
new syntax is necessary to remove the range restriction. In Ωmega a new form of declaring new
datatypes is supported. We call this form the GADT (or explicit) form.

1. An explicit form of a data definition is supported in which the type being defined is given
an explicit kind, and every constructor is given an explicit type.

We illustrate the new form below:

-- A GADT declaration using explicit classification. Note the range

-- of the constructor ’Pair’ is not ’Term’ applied to a type variable.

data Term :: *0 ~> *0 where
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Const :: a -> Term a

Pair :: Term a -> Term b -> Term (a,b)

App :: Term(a -> b) -> Term a -> Term b

-- The ADT, Tree, using the explicit GADT form (allowed but not necessary).

data Tree:: *0 ~> *0 where

Fork:: Tree a -> Tree a -> Tree a

Node:: a -> Tree a

Tip:: Tree a

Like an ADT style declaration, the GADT style declaration introduces a new type constructor
(Term) which is classified by a kind (*0 ~> *0). Here the kind is made explicit. This means that
Term takes types to types. In the GADT form no restriction is placed on the types of the
constructor functions except that the range of each constructor must be a fully applied instance
of the type being defined, and that the type of the constructor as a whole must be classified by
*n, for some n. See the rest of this manual, and many of the papers about Ωmega listed in Section
27, for many more examples.

Note that all algebraic data types, like Tree, can be expressed using the explicit GADT form.
We retain the ADT form for backward compatibility.

7.1 The Off-side Rule in GADT Declaration

Note also that the ADT form separates the declaration of constructor functions by using the
vertical bar ( | ), but the GADT form uses the offside rule. The declarations of all the constructor
functions should begin in the same column.

7.2 Equality-constrained Types are Deprecated

Some early versions of Ωmega supported an additional form of declaration using equality con-
straints in where clauses. For example:

-- Old style "equality-constraint" style.

data Term a

= Const a

| exists x y . Pair (Term x)(Term y) where a =(x,y)

| exists b . App (Term(b -> a)) (Term b)

This form has been deprecated starting with Ωmega version 1.2.3. It is no longer allowed. In
order to help users convert old Ωmega programs, the system prints an error message and suggests
a GADT style definition. For example, given the old-style declaration above the system suggests:

The implicit form of data decls (using where clauses) has been deprecated.

Please use the explicit form instead. Rather than writing:

data Term a = Const a

| forall x y . Pair (Term x) (Term y)

where a = (x, y)
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| forall b . App (Term (b -> a)) (Term b)

One should write something like:

(One may need to adjust the kind of ’Term’)

data Term:: (*? ~> *0) where

Const:: forall a . a -> Term a

Pair:: forall x y a . Term x -> Term y -> Term (x, y)

App:: forall b a . Term (b -> a) -> Term b -> Term a

Sometimes the classification of the type constructor is not correct (See the "*?" above), but other
than this, it can be cut and pasted into the file to replace the old-style declaration.

8 Leibniz Equality

Terminating terms of type (Equal lhs rhs) are values witnessing the equality of lhs and rhs.
The type constructor Equal is defined as:

data Equal :: a ~> a ~> *0 where

Eq:: Equal x x

Note that Equal is a GADT, since in the type of the constructor Eq the two type indexes
are the same, and not just polymorphic variables (i.e. the type of Eq is not (Equal x y) but
is rather (Equal x x)). The single constructor (Eq) has a polymorphic type (Equal x x). Or-
dinarily, if the two arguments of Equal are type-constructor terms, the two arguments must be
the same (or they couldn’t be equal). But, if we allow type functions as arguments (see Section
18), then since many functions may compute the same result (even with with different argu-
ments), the two terms can be syntactically different (but semantically the same). For example
(Equal 2t {plus 1t 1t}) is a well formed equality type since 2 is semantically equal to 1+1.
The Equal type allows the programmer to reify the type checker’s notion of equality, and to
pass this reified evidence around as a value. The Equal type plays a large role in the theorem

declaration (see Section 19).

9 Polymorphism and Data Declarations

Ωmega supports both existentially and universally quantified components in data declarations.
An example of existential quantification is:

data Closure:: *0 ~> *0 ~> *0 where

Close:: env -> (env -> a -> b) -> Closure a b

In the type of a constructor function, all type variables not appearing in the range of the construc-
tor function (here, the variable env) are implicitly existentially quantified. The type of Close
is polymorphic since it can be applied to any kind of environment, but special typing rules are
employed when pattern matching against a pattern like (Close e f) which ensure that the type
of the pattern variable e does not escape its scope.
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Polymorphic (or universally quantified) components can be declared by placing a universal
quantifer in the arg position of a constructor. An example of this are the types of the return,
bind, and fail components of the Monad declaration (defined in Section 2) and used in Section
6. Another example would be the type that can only store the identity function,

data Id = Id (forall a . a -> a)

It is also possible to give prototypes with rank-N types, and the type checker will check that
the defined function is called properly. The Ωmega implementation is based upon Simon Peyton
Jones work on implementing type-checking for rank-N polymorphism[JS03]

10 Anonymous Existential Types

Existential types can be encoded in Ωmega inside of data declarations by using the implict
existential quantification of type variables not occurring in the range-type of constructor functions
as shown above in the declaration for Close.

Sometimes it is convenient to have existential quantification without defining a data type to
encode it. This is possible in Ωmega by using the anonymous existential constructor Ex. Because
Ex encodes anonymous existential types, the user is required to use function prototypes that
propagate the intended existential type into the use of Ex. For example:

existsA :: exists t . (t,t->String)

existsA = Ex (5,\ x -> show(x+1))

testf :: (exists t . (t,t-> String)) -> String

testf (Ex (a,f)) = f a

The keyword Ex is the “pack” operator of Cardelli and Wegner [CW85]. Its use turns a nor-
mal type (Seq a p,Plus n m p) into an existential type exists p.(Seq a p,Plus n m p). The
Ωmega compiler uses a bidirectional type checking algorithm to propagate the existential type in
the signature inwards to the Ex tagged expressions. This allows it to abstract over the correct
existentially quantified variables.

11 New Types with Different Kinds

Kinds are similar to types in that, while types classify values, kinds classify types. We indicate
this by the overloaded classifies relation (::). For example: 5::Int, and Int::*0 . We say 5

is classified by Int, and Int is classified by *0 (star-zero). The kind *0 classifies all types that
classify values (things we actually can compute). A kind declaration introduces new types and
their associated kinds (just as a data declaration introduces new values (the constructors) and
their associated types). Types introduced by a kind declaration have kinds other than *0. For
example, the Nat declaration introduces two new type constructors Z and S which encode the
natural numbers at the type level:

kind Nat = Z | S Nat
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5

Int

*0

*1

[ 5 ]

[ Int ] 

*0

[ ]

*0 ~> 0*

S

Nat ~> Nat

Z

Nat

*2

sorts

kinds

types

values

Figure 4: The classification hierarchy. An arrow from a to b means b::a. Note how only values
are classified by types that are classified by *0, and how type constructors (like [] and S) have
higher order kinds.

The type Z has kind Nat, and S has kind Nat ~> Nat. The type S is a type constructor, so it has
a higher-order kind. We indicate this using the classifies relation as follows:

Z :: Nat

S :: Nat ~> Nat

Nat :: *1

The classification Nat::*1 indicates that Nat is at the same “level” as *0 — they are both
classified by *1. Just as every ADT can be expressed as a GADT, every kind declaration can
also be expressed as an GADT. For example we could write the declaration of Nat as a GADT as
follows:

data Nat:: *1 where

Z:: Nat

S:: Nat ~> Nat

The system infers that this is a kind declaration by observing that Nat is kinded by *1 (GADTs
kinded by *0 would be types, and those kinded by *2 would be sorts). There is an infinite
hierarchy of classifications, and users can populate each level of the classification using GADT
style declarations. Each level is associated with one of the kinds *n. For example, at the kind
level *0 and Nat are classified by *1, *1 is classified by *2, etc. We call this hierarchy the strata.
In fact this infinite hierarchy is why we chose the name Ωmega. The first few strata are: values
and expressions that are classified by types, types that are classified by kinds, and kinds that are
classified by sorts, etc. We illustrate the relationship between the values, types, kinds, and sorts
in Figure 4.

In general, a GADT declaration mediates between two levels of the hierarchy. Introducing the
type constructor at level n + 1, and constructor functions at level n. The ADT data declaration
is a special case of the GADT introducing a type constructor at the type level, and constructor
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functions at the value level (as it does in Haskell). The kind declaration is another special case
introducing a type constructor at the kind 2, and constructor functions at the type level.

Kinds (sorts, etc.) are useful because we can use them to index new types. For example the
type constructor List is indexed by Nat, and the Nat valued index is a static indication of the
length of the list.

data List:: Nat ~> *0 ~> *0 where

Nil:: List Z a

Cons:: a -> List m a -> List (S m) a

We can also use kinds to define other interesting types. For example we can define our own kind
of “tuples” using the Prod kind.

data Prod:: *1 ~> *1 where

PNil:: Prod a

PCons:: k ~> Prod k ~> Prod k

data Tuple:: Prod *0 ~> *0 where

Tnil:: Tuple PNil

Tcons:: t -> (Tuple r) -> Tuple (PCons t r)

The type (PCons Int PNil) is classified by (Prod *0), but the type (PCons Z (PCons (S Z) PNil))

is classified by (Prod Nat). The value level term (Tcons 5 (Tcons True Tnil))) is classified
by the type (Tuple (Rcons Int (Rcons Bool Rnil))).

11.1 Polymorphic Kinds

In Ωmega it is possible to give a type constructor introduced using the GADT form a polymorphic
classification. This allows users to specify kinds for type constructors that cannot be inferred. In
the example below we specify a polymorphic kind for the type TRep:

data TRep:: forall (k :: *1) . (k ~> *0) where

Int:: TRep Int

Char:: TRep Char

Unit:: TRep ()

Prod:: TRep (,)

Sum:: TRep (+)

Arr:: TRep (->)

Ap:: TRep f -> TRep x -> TRep (f x)

This allows a single GADT to represent both type constructors like (->) and (,), as well as types
like Int and Char. The term (Ap(Ap Prod Int) Unit) is classified by the type (TRep (Int,())).

12 Separate Value and Type Name Spaces

In Ωmega, as in Haskell, the name-space for the value level is separate from the name-space for
the type level. In addition, in Ωmega, the type name-space includes all levels above the value
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level. This includes types, kinds, sorts etc. This allows a sort of punning, where objects at the
value level can have the same name as different objects at the type level and above. This punning
becomes particularly useful when the objects at the two levels are different, but related. The
classic pun is the singleton type Nat’

data Nat’:: Nat ~> *0 where

Z:: Nat’ Z

S:: Nat’ n -> Nat’ (S n)

three’ = (S(S(S Z))):: Nat’(S(S(S Z)))

The value constructors (Z:: Nat’ Z) and (S:: Nat’ n -> Nat’ (S n)) are ordinary val-
ues whose types mention the type constructors they pun. In Nat’, the singleton relationship
between a Nat’ value and its type is emphasized strongly, as witnessed by the example three’.
Here the shape of the value, and the type index appears isomorphic. The table below illustrates
the separate name spaces and the levels within the type hierarchy where each constructor resides.

← value name space | type name space →

value | type | kind | sort

| Z :: Nat :: *1

| S :: Nat ~> Nat :: *1

Z :: Nat’ Z :: *0 :: *1

S :: Nat’ m -> Nat’ (S m) :: *0 :: *1

In Ωmega, we further exploit this pun, by providing syntactic sugar for writing natural numbers
at both the value and the type level. We write 0t (for Z), 1t (for S Z), 2t (for S(S Z)), etc. for
Nat terms at the type level. We write 0v (for Z), 1v (for S Z), 2v, (for S(S Z)) etc. for Nat’

terms at the value level. This syntactic sugar is an example of syntactic extension. See Section
22 for further examples. For backward compatibility reasons one may also write #0, #1, #2, etc.

13 Tags and Labels

Many object languages have a notion of name. To make representing names in the type system
easy we introduce the notion of Tags and Labels. As a first approximation, consider the finite
kind Tag and its singleton type Label:

data Tag:: *1 where

A:: Tag

B:: Tag

C:: Tag

data Label:: Tag ~> *0 where

A:: Label A

B:: Label B

C:: Label C
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Here, we again deliberately use the value-name space, type-name space overloading. The
names A, B, and C name different, but related, objects at both the value and type level. At the
value level, every Label has a type index that reflects its value. I.e. A::Label A, and B::Label

B, and C::Label C. Now consider a countably infinite set of tags and labels. We can’t define this
explicitly, but we can build such a type as a primitive inside of Ωmega. At the type level, every
legal identifier whose name is preceded by a back-tick (‘) is a type classified by the kind Tag. For
example the type ‘abc is classified by Tag. At the value level, every such symbol ‘x is classified
by the type (Label ‘x).

There are several functions that operate on labels. The first is sameLabel which compares
two labels for equality. Since labels are singletons, a simple true or false answer would be useless.
Instead sameLabel returns either a Leibniz proof of equality (see Section 8) that the Tag indexes
of identical labels are themselves equal, or a proof of inequality with an ordering hint.

sameLabel :: forall (a:Tag) (b:Tag).Label a -> Label b

-> Equal a b + DiffLabel a b

prompt> sameLabel ‘w ‘w

(L Eq) : ((Equal ‘w ‘w) + (DiffLabel ‘w ‘w))

prompt> sameLabel ‘w ‘s

(R (LabelNotEq GT)) : ((Equal ‘w ‘s) + (DiffLabel ‘w ‘s))

Fresh labels can be generated by the function freshLabel. Since the Tag index for such a label
is unknown, the generator must return a structure where the Tag indexing the label is existentially
quantified. Since every call to freshLabel generates a different label, the freshLabel operation
must be an action in the IO monad. The function newLabel coerces a string into a label. It too,
must existentially hide the Tag indexing the returned label. But, because it always returns the
same label when given the same input it can be a pure function.

freshLabel :: IO HiddenLabel

newLabel:: String -> HiddenLabel

data HiddenLabel :: *0 where

HideLabel:: Label t -> HiddenLabel

We illustrate this at the top-level loop. The Ωmega top-level loop executes IO actions (see Section
15), and evaluates and prints out the value of expressions with other types.

prompt> freshLabel

Executing IO action -- An IO action

(HideLabel ‘#cbp) : IO HiddenLabel

prompt> temp <- freshLabel -- An IO action

Executing IO action

(HideLabel ‘#sbq) : HiddenLabel

prompt> temp
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(HideLabel ‘#sbq) : HiddenLabel

prompt> newLabel "a" -- A pure value

(HideLabel ‘a) : HiddenLabel

14 Staging

Ωmega includes two staging annotations and brackets: ([| _ |]), escape ($( _ )), and two func-
tions: lift::(forall a . a -> Code a) and run::(forall a . Code a -> a) for building
and manipulating code. Ωmega uses the Template Haskell[SPJ02] conventions for creating code.
For example:

inc x = x + 1

c1a = [| 4 + 3 |]

c2a = [| \ x -> x + $c1a |]

c3 = [| let f x = y - 1 where y = 3 * x in f 4 + 3 |]

c4 = [| inc 3 |]

c5 = [| [| 3 |] |]

c6 = [| \ x -> x |]

The purpose of the staging mechanism is to have finer control over evaluation order. Ωmega
supports many of the features of MetaML[She99, TS00]. The staging in Ωmega is experimental
and may change in future releases.

An example staged term is:

c18 = let h 0 z = z

h n z = [| let y = n in $(h (n-1) [| $z + y |]) |]

in h 3 [| 99 |]

This term evaluates to the piece of code below:

[| let y297 = 3

y299 = 2

y301 = 1

in 99 + y297 + y299 + y301

|] : Code Int

15 Command Level Prompts

Once inside the Ωmega interpreter the user interacts with Ωmega using command-level prompts.
Most commands begin with the letter ’:’ In Figure 5, the command level prompts are defined
and their usage is explained. Commands are modelled after the Hugs (or GHCi) command level
prompts. There are far fewer commands in Ωmega than in Hugs. The :set and :clear command
are discussed in much more detail in Section 24 where we discuss user controlled tracing inside
the type-checker.
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let v = e bind ’v’ to ’e’ in interactive loop

v <- e evaluate IO expression ’e’ and bind to ’v’

exp read-typecheck-eval-print ’exp’

:quit quit

:type display type of expression

:env n display info for first ’n’ items

:env str display info for items with ’str’ in their names

:reload file reload file into system

:version display version info

:kind type display kind of type expression

:load file load file into system. Start with fresh, empty environment

:also file load file into system, extending current environment

:set list all the Mode variables and their settings

:set mode set the Mode variable X (where ’mode’ is a prefix of X) to True

:clear mode clear the Mode variable X (where ’mode’ is a prefix of X) to False

:init reset system to initial configuration (flush definitions)

:rules name display rules for ’name’ (if name is omitted, displays all rules)

:pre display declarations for all predefined types

:narrow type narrow type expression

:norm type normalize type expression (use function definitions and rewrites)

:bounds X n set the resource bound X to n

:sources list the source files currently loaded

:? display list of legal commands (this message)

Figure 5: Legal inputs to the command line interpreter.

15.1 The Command Line Editor

Starting with Ωmega version 1.2, the read eval print loop comes equipped with a command line
editor. The editor is implemented by the GNU Readline Library. This is the same library used to
implement the command line editor in many Linux distributions, so it should be familiar to many
users. For a short introduction one can consult any of the online introductions to the library. One
that I used was http://www.ugcs.caltech.edu/info/readline/rlman_1.html.

Amongst many other features, the command line editor allows users to cycle through previous
commands by using the up (↑) and down (↓) arrow keys, to move the cursor forward and backward
using the right (→) and left (←) arrow keys, and to edit text using backspace and delete. The
command editor also implements tab completion by looking up prefixes in the Ωmega symbol
table. I’d like to thank Nils Anders Danielsson for the initial implementation.

The command line editor is also installed in the read-typecheck-print loop described in the
next section.

16 The Type Checking Read-Typecheck-Print Loop

Ωmega allows the user to investigate the types of expressions while type checking them. By placing
the language construct “check ” before a term the type checker enters a read-typecheck-print
loop in the scope where the check occurs. The check construct has the lowest parsing precedence,
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so its scope (like the lambda expression), extends to as far to the right as possible. One can
delimit its scope by using parenthesis. For example consider:

data LE:: Nat ~> Nat ~> *0 where

LeBase:: LE n n

LeStep:: LE n m -> LE n (S m)

compare :: Nat’ a -> Nat’ b -> ((LE a b)+(LE b a))

compare Z Z = L LeBase

compare Z (S x) =

case compare Z x of L w -> L(LeStep w)

compare (S x) Z =

case compare Z x of L w -> R(LeStep w)

compare (S x) (S y) = check mapP g g (compare x y)

where mapP f g (L x) = L(f x)

mapP f g (R x) = R(g x)

g :: LE x y -> LE (S x) (S y)

g LeBase = LeBase

g (LeStep x) = LeStep(g x)

In the 4th clause of compare, the check construct extends to the end of the line, encompassing
the whole mapP application. The purpose of the check is to allow the user to investigate the type
of some expressions in a rather large complex function definition. The check in the scope of the
fourth clause of compare directs the type checker to pause and enter an interactive loop. The
following is a script of one such interaction. It places the user in the scope of the fourth clause to
compare above, where the check keyword appears. Note that, in the transcript below, the user
enters the code after the check> prompt.

*** Checking: mapP g g (compare x y)

*** expected type: ((LE (1+_c)t (1+_d)t)+(LE (1+_d)t (1+_c)t))

*** refinement: {_a=(1+_c)t, _b=(1+_d)t}

*** assumptions:

*** theorems:

check> x

x :: Nat’ _c

check> y

y :: Nat’ _d

check> mapP

mapP :: (e -> f) -> (g -> h) -> (e+g) -> (f+h)

check> g

g :: LE i j -> LE (1+i)t (1+j)t

check> :h
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Hint = ((LE (1+_c)t (1+_d)t)+(LE (1+_d)t (1+_c)t))

check> compare x y

compare x y :: ((LE _c _d)+(LE _d _c))

check> mapP g g

mapP g g :: ((LE k l)+(LE m n)) -> ((LE (1+k)t (1+l)t)+(LE (1+m)t (1+n)t))

check> mapP g g (compare x y)

mapP g g (compare x y) :: ((LE (1+_c)t (1+_d)t)+(LE (1+_d)t (1+_c)t))

Inside the read-typecheck-print loop the user may enter expressions whose types are then printed,
or they may use one of the following commands.

:q Quit checking and let the type checker continue.

:e Show the assumptions list in the current environment.

:k t Print the kind of type t.

:norm t Normalize type expression t.

:h Show the hint the type the type checker expects the checked expression to have.

:t f Print the type scheme for the variable f.

exp Type check and print the type of the expression exp.

:set m Set the mode m, the same modes are available here as in the interactive loop.

:try exp Compare the type of exp with the expected type, and display generated constraints.

17 Explicit Laziness

Ωmega is a strict, but pure, language. All side-effects are captured in the IO monad. We have
included an experimental feature in Ωmega. That feature is the introduction of explicit lazi-
ness. It is best to read the paper A Pure Language with Default Strict Evaluation Order and
Explicit Laziness[She03] for a complete description. We list the interface to this feature here for
completeness.

lazy :: e -> e -- lazy is a language construct not a function

strict :: e -> e

mimic :: (f -> g) -> f -> g

We can use this interface to build infinite streams

(twos,junk) = (2:(lazy twos),lazy(head twos))

(ms,ns) = (1:(lazy ns),2:(lazy ms))

Expressions labelled with lazy are not evaluated until they are pulled on. Printing in the read-
eval-print loop, does not print lazy thunks, but prints them as ....
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prompt> twos

[2 ...] : [Int]

prompt> take 5 twos

[2,2,2,2,2] : [Int]

A classic example is the infinite list of fibonacci numbers.

-- fibonacci

zipWith f (x:xs) (y:ys) =

f x y : mimic (mimic (zipWith f) xs) ys

fibs = 0 : 1 : (lazy (zipWith (+) fibs (tail fibs)))

We can observe a finite prefix of fibs by defining a take function

take 0 xs = []

take n [] = []

take n (x:xs) = x :(take (n-1) xs)

prompt> take 10 fibs

[0,1,1,2,3,5,8,13,21,34] : [Int]

18 Type Functions

Ωmega allows programmers to write arbitrary type functions as first order equations, which are
interpreted as left to right rewrite rules. In a future release we expect to limit such definitions
to confluent and terminating sets of rewrite rules. A type function “computes” over types of a
particular kind, and can be used in a prototype declaration of a function that mentions a type of
that kind. We can illustrate this by the Ωmega program

data List:: Nat ~> *0 ~> *0 where

Nil:: List Z a

Cons:: a -> List m a -> List (S m) a

plus :: Nat ~> Nat ~> Nat

{plus Z y} = y

{plus (S x) y} = S{plus x y}

app:: List n a -> List m a -> List {plus n m} a

app Nil ys = ys

app (Cons x xs) ys = Cons x (app xs ys)

The code introduces the type of sequences, Seq, with static length (a Nat), the new type-
function, plus (over Nat), and the definition of app the append function over sequences. Note
how the length of the result is a function of the length of the input sequences. Since the length
of a sequence is a Nat which is a type, a function over types is required to give a type to app.
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Type-functions are functions at the type level. We define them by writing a set of equations.
We distinguish type-function application from type-constructor (i.e. Tree or Term) by enclosing
them in squiggly brackets. Type functions must be preceded by prototype declaration stating
their kind. They consist of a set of exhaustive (over their kind) and confluent rewriting rules.
This is not currently enforced, but failure to do this may cause the Ωmega type checker to diverge.

Type checking app, generates and propagates equalities, and requires solving the equations
like (S{plus t m} = {plus n m}) and (n = S t). The Ωmega typechecker solves such equations
using a form of narrowing.

18.1 Solving Type-Checking Equations Using Narrowing

Ωmega uses a number of techniques to solve equations which arise from type checking. One of
these is narrowing. Narrowing is a well studied computational mechanism, and is the primary
means of computation in the functional logic language Curry [He06, HS99]. Narrowing combines
the power of reduction and unification. Narrowing can be used to compare two terms (each
containing function calls and variables) and decide if they are equal. Unlike unification, the
terms being compared can contain functions, and unlike reduction, the terms being simplified
can contain variables. Narrowing finds bindings for some free variables in a term, such that the
term reduces to a normal form. Narrowing is a special purpose constraint solving system, that
can answer some of the equivalence questions asked when there are functions at the type level.
In order to implement narrowing with a sound and complete strategy, we require type functions
to be written in inductively sequential form (see Section 18.2.1). In earlier versions of Ωmega,
narrowing played a larger role in solving type-checking equations. With the advent of the theorem
declaration (Section 19), this role has diminished, but it is still used to some degree.

18.1.1 How Narrowing Works

Narrowing finds bindings for some free variables in the term being narrowed, once instantiated,
these bindings allow the term to reduce to a normal form.

If a term contains constructors, function symbols, and variables, it often cannot be reduced.
Usually, because function calls within the term do not match any left-hand side of any of their
definitions. The failure to match is caused by either variables or other function calls in positions
where the function definitions have only constructor patterns. Consider narrowing (plus a Z ==

Z) (checking whether {plus a Z} is equal to Z).

This cannot be reduced because plus inducts over its first argument with the patterns Z

and (S n). But in (plus a Z == Z), the first argument position is a variable (a). Narrowing
proceeds by guessing instantiations for the variable a – either {a -> Z} or {a -> (S m)}, and
following both paths.

plus:: Nat ~> Nat ~> Nat

{plus Z m} = m

{plus (S n) m}= S {plus n m}

guess {a -> Z}

({plus Z Z} == Z)

(Z == Z)

Success !

guess {a -> (S m)}

({plus (S m) Z} == Z)

(S {plus m Z} == Z)

Failure.

The returned solutions are the bindings obtained in every successful path. In the example
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above we get a list of one solution: [{a -> Z}]. Some problems have no solutions, some have mul-
tiple, and some even have infinite solutions. Consider {plus x 2t}, we get 2t when {x -> 0t},
and 3t when {x -> 1t}, and 4t when {x -> 2t} etc.

Narrowing works best when we have a problem with many constraints. The constraints
prune the search path resulting in few solutions. If we’re type checking with narrowing we hope
there is exactly one solution. Consider narrowing ({plus x 3t} == 5t), Guessing {x -> Z} and
{x -> S z1} we get the two paths:

1) { 3t == 5t }

2) { (1+{plus z1 3t})t == 5t }

The first path fails, on the second path we take a single reduction step leaving:

{ {plus z1 3t} == 4t }

Guessing {z1 -> 0} and {z1 -> S z2} we get the two paths:

1) { 3t == 4t }

2) { (1+{plus z2 3t})t == 4t }

The first path fails, on the second path we again take a single reduction step leaving:

{ {plus z2 3t} == 3t }

Guessing {z2 -> 0} and {z2 -> S z3} we get the two paths:

1) { 3t == 3t }

2) { (1+{plus z3 3t})t == 3t }

The first succeeds, and the second eventually fails, leaving us with only one solution { x -> 2t }.
We have found narrowing to be a efficient and understandable mechanism for directing computa-
tion at the type level.

18.2 Narrowing and Type-checking

Narrowing plays a role in type checking value-level functions that mention type functions in their
type. For example consider:

app:: Seq a n -> Seq a m -> Seq a {plus n m}

app Snil ys = ys

app (Scons x xs) ys = Scons x (app xs ys)

To see that the app is well typed, the type checker does the following. The expected type
is the type given in the function prototype. We compute the type of both the left- and right-
hand-side of the equation defining a clause. We compare the expected type with the computed
type for both the left- and right-hand-sides. This comparison generates some necessary equalities
(for each side) to make the expected and computed types equal. We assume the left-hand-side
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equalities to prove the right-hand-side equalities. To see this in action, consider the second clause
of the definition of app.

expected type Seq a n → Seq a m → Seq a {plus n m}

equation app (Scons x xs) ys = Scons x (app xs ys)

computed type Seq a (S b) → Seq a m → Seq a (S {plus b m})

equalities n = (S b) ⇒ {plus n m}= S({plus b m})

The left-hand-side equalities let us assume n = (S b). The right-hand-side equalities, require
us to establish that {plus n m} = (S{plus b m}). Using the assumption that n = (S b), we are
left with the requirement that {plus (S b) m} = (S{plus b m}), which is easy to prove using
the definition of plus. Narrowing is one mechanism that could solve this kind of equation. We
are currently using narrowing, but are evaluating its effectiveness for future releases of Ωmega.

18.2.1 Narrowing Strategies

While narrowing is non-deterministic, it is both sound and complete with an appropriate strategy
[Ant05]. All answers found are real answers, and if there exists an answer, good strategies will find
it. When a question has an infinite number of answers, a good implementation will produce these
answers lazily. In our type-checking context, finding 2 or more answers is a sign that a program
being type checked has an ambiguous type and needs to be adjusted. In the rare occurrence that
narrowing appears to diverge on a particular question, we can safely put resource bounds on the
narrowing process, declaring failure if the resource bounds are exceeded. The consequence of such
a declaration, is the possibility of declaring a well-typed function ill-typed. In our experience this
rarely happens.

We restrict the form of function definitions at the type level to be inductively sequential[Ant92].
This ensures a sound and complete narrowing strategy for answering type-checking time questions.
The class of inductively sequential functions is a large one, in fact every Haskell function has an
inductively sequential definition. The inductively sequential restriction affects the form of the
equations, and not the functions that can be expressed. Informally, a function definition is
inductively sequential if all its clauses are non-overlapping. For example the definition of zip1 is
not-inductively sequential, but the equivalent program zip2 is.

zip1 (x:xs) (y:ys) = (x,y): (zip1 xs ys)

zip1 xs ys = []

zip2 (x:xs) (y:ys) = (x,y): (zip2 xs ys)

zip2 (x:xs) [] = []

zip2 [] ys = []

The definition for zip1 is not inductively sequential, since its two clauses overlap. In general
any non-inductively sequential definition can be turned into an inductively sequential definition
by duplicating some of its clauses, instantiating variable patterns with constructor based patterns.
This will make the new clauses non-overlapping. We do not think this burden is to much of a
burden to pay, since it is applied only to functions at the type level, and it supports sound and
complete narrowing strategies.
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We pay for the generality of narrowing over unification and reduction by a modest increase
in overhead. Narrowing uses a general purpose search algorithm rather than a special purpose
unification or reduction engine. Narrowing is Turing complete, so we can solve any problem that
can be solved by reduction, and many more.

19 The theorem Declaration

The theorem declaration is a primary way of directing the type checker. It uses ordinary terms,
with types that can be read logically, as specifcations for new type checking strategies. There are
currently three types of theorems. Each is used to direct the type checker to do things it might
not ordinarily do. This is best seen by example.

19.1 Equal Types as Rewrite Rules

Narrowing alone is quite weak. Suppose we had declared the type of app as:

app:: List n a -> List m a -> List {plus m n} a

I.e. we switched the order of m and n in the range of app, writing (List {plus m n} a),
rather than (List {plus n m} a). Semantically, this is a valid type for app, it is just too hard
for the current mechanism to check its validity. The type checker has to solve (S{plus m t} =

{plus m (S t)}), which matches none of the rewrite rules defining plus, and which leads to an
infinite set of solutions if narrowing is used.

The solution is to augment the narrowing system with a set of semantically valid rewrite
rules, and to apply these rules at the proper time. Rewrite rules are validated by exhibiting a
terminating term with type: (Equal lhs rhs) and using this type as a left to right rewrite rule.

We use Equal terms (see Section 8) in the theorem declaration. The declaration:

theorem name = term

checks that term is terminating, and its type is of the form: conditions -> (Equal lhs rhs).
If this is so, and the conditions are met, the rewrite-rule lhs --> rhs is enabled in the scope
of the declaration. The declaration has no run-time meaning. The term is not evaluated at
runtime, and only its type is used in the scope of the declaration, and only at type-checking
time. An example use of the theorem declaration is in the definition of a term with type:
(Nat’ x -> Equal {plus x (S y)} (S{plus x y}))

plusS :: Nat’ n -> Equal {plus n (S m)} (S{plus n m})

plusS Z = Eq

plusS (S x) = check Eq

where theorem indHyp = plusS x

Because this term is recursive, but terminating, we can consider it a proof by induction of the
theorem embodied in its type. To illustrate how this knowledge is used, consider the information
in the type-checking debugger break-point, caused by the check clause in the definition of plusS
above:
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*** Checking: Eq

*** expected type: Equal {plus (1+_a)t (1+_m)t} (1+{plus (1+_a)t _m})t

*** refinement: {_n=(1+_a)t}

*** assumptions: Nat’ _a

*** theorems: Rewrite indHyp: [] => {plus _a (1+’b)t} --> (1+{plus _a ’b})t

Note we need to show that {plus (1+_a)t (1+_m)t} is equal to (1+{plus (1+_a)t _m})t.
Reduction leads to the equality (1+{plus _a (1+_m)t})t == (2+{plus a _m})t. Applying the
rewrite we get the expected result: (2+{plus _a _m})t == (2+{plus a _m})t.

20 Types as Propositions

A datatype can be declared to be a proposition by the use of the prop declaration. A prop

declaration is identical in form to a data declaration. It introduces a new type constructor and
it’s associated (value) constructor functions. But it also informs the compiler that this type can
be used as a static level proposition which can be used as a constraint. For example consider the
proposition Le (which is a slight variant of the LE witness from section 16).

prop Le :: Nat ~> Nat ~> *0 where

Base:: Le Z a

Step:: Le a b -> Le (S a) (S b)

The type Le is introduced as a witness type with constructor functions Base and Step. These
construct ordinary values. But the type Le can now also be used as static constraint. For example,
we might define statically ordered lists as follows:

data SSeq:: Nat ~> *0 where

Snil:: SSeq Z

Scons:: Le b a => Nat’ a -> SSeq b -> SSeq a

Note that the type of Scons contains an Le proposition as a constraint:

Scons :: forall (a:Nat) (b:Nat) . Le b a => Nat’ a -> SSeq b

These constraints are propagated like equality constraints (or like class constraints in Haskell).
For example, the term: \ x y z -> Scons x (Scons y z) is assigned the constrained type:

(Le a b,Le b c) => Nat’ c -> Nat’ b -> SSeq a -> SSeq c

The compiler uses the type of the constructor functions for Le to build the following constraint
solving rules.

Base: Le Z a -->

Step: Le (S a) (S b) --> Le a b

These rules can be used to satisfy obligations introduced by propositional types.
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20.1 Types as Back-chaining Rules

The user can introduce new propositional facts by writing functions over types introduced by the
prop declaration. For example we can show that Le is transitive by exhibiting the total function
trans with the following type.

trans :: Le a b -> Le b c -> Le a c

trans Base Base = Base

trans (Step z) Base = unreachable

trans Base (Step z) = Base

trans (Step x) (Step y) = (Step(trans x y))

Since this function is total, its type becomes a new rule that can be used to satisfy propositional
obligations. We can activate this rule in some scope by using the theorem declaration. For
example:

f x = body

where theorem trans

Observes that the type of trans can be used as a back-chaining predicate solver and adds the
following rule in the scope of the where clause. The rule:

trans: (exists d) [Le b d, Le d c] => Le b c --> []

says that we can satisfy (Le b c) if we can find a concrete d such that (both) (Le b d) and (Le

d c) are satisfied.

21 Unreachable Clauses

Type indexes to GADTs allow the user to make finer distinctions than when using ordinary
algebraic datatypes. Sometimes such distinctions cause a clause in a function definition to become
unreachable. For example consider the second clause in the definition of transP below:

trans :: Le a b -> Le b c -> Le a c

trans Base Base = Base

trans (Step z) Base = unreachable

trans Base (Step z) = Base

trans (Step x) (Step y) = (Step(trans x y))

The pattern (Step z) has type (Le (S i) (S j)) when we know a = (S i) and b = (S j).
The pattern Base has type (Le Z k) when we know b = Z and c = k. These sets of assumptions
are inconsistent, since b can’t simultaneously be equal to Z and (S i). So the clause in the scope
of these patterns is unreachable. There are no well-typed arguments, to which we could apply
trans, that would exercise the second clause. The keyword unreachable indicates to the compiler
that we recognize this fact. The reachability of all unreachable clauses is tested. If they are in
fact reachable, an error is raised. An unreachable clause, without the unreachable keyword also
raises an error.

The point of the unreachable clause is to document that the author of the code knows that
this clause is unreachable, and to help document that the clauses exhaustively cover all possible
cases.
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21.1 Types as Refinement Lemmas

Consider the function half defined below. Given a natural number whose size is expressed as the
sum of a number with itself, it returns another number with size exactly half of the original. The
type tells us the function is undefined on numbers whose size is not expressible as the sum of a
number with itself.

plus :: Nat ~> Nat ~> Nat

{plus Z y} = y

{plus (S x) y} = S{plus x y}

half:: Nat’ {plus n n} -> Nat’ n

half Z = check Z

half (S Z) = unreachable

half (S (S x)) = S(half x)

The first and third equations generate the following type checking equations.

expected type Nat’ {plus n n} → Nat’ n

equation half Z = Z

computed type Nat’ Z → Nat’ Z

equalities (Equal {plus n n} Z) ⇒ (Equal n Z)

expected type Nat’ {plus n n} → Nat’ n

equation half (S (S x)) = (S(half x))

computed type Nat’ (S(S a)) → Nat’ (S c)

equalities (Equal {plus n n} (S(S a))) ⇒ (Equal n (S c),Equal a {plus c c})

The current system cannot solve the given constraints. The hypothesis are in terms of the
type-function call {plus n n}. What we need is to direct the type checker to take these facts
and discover facts about n, instead of facts about {plus n n}. Such facts are exhibited in the
types of the following two functions.

nPlusN2:: Nat’ n -> Equal (S (S m)) {plus n n} ->

exists k . (Equal n (S k),Equal m {plus k k})

nPlusN2 Z Eq = unreachable

nPlusN2 (S y) Eq = Ex(Eq,Eq)

where theorem plusS

nPlusN0:: Nat’ n -> Equal Z {plus n n} -> Equal n Z

nPlusN0 Z Eq = Eq

nPlusN0 (S y) Eq = unreachable

These functions are typechecked by a case analysis. In each function one of the clauses is
unreachable, because the expected type is inconsistent with the type of the pattern in the defini-
tion. By introducing these terms as theorems in the definition of half we gain extra information.
Consider
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half:: Nat’ {plus n n} -> Nat’ n

half Z = Z where theorem nPlusN0 -- introduces (Equal n Z)

half (S Z) = unreachable

half (S (S x)) = S(half x) where theorem nPlusN2

-- introduces (Equal n (S c),Equal a {plus c c})

21.2 General Use of the theorem Declaration

Theorems are added by the theorem declaration. The general form of a theorem declaration is
the keyword theorem followed by 1 or more (comma separated) theorems. Each theorem is either
an identifier or an identifier = term. For example one may write:

f:: Nat’ n -> Int

f m = 5

where theorem trans, indHyp = plusS m, nPlusN0

Here, three theorems are introduced. They are named trans, indHyp, and nPlusN0. The body
of the theorem is taken from the types of the terms trans, (plusS m) and S. If a theorem does
not have an associated term (as is the case for trans), the variable in scope with the same name
as the theorem is used. In the scope of the body of f the theorems are:

BackChain trans: (exists ’d) [Le ’b ’d, Le ’d ’c] => Le ’b ’c --> []

Rewrite indHyp: [] => {plus _n (1+’e)t} --> (1+{plus _n ’e})t

Refinement nPlusN0: [Nat’ ’a] => Equal 0t {plus ’a ’a} --> [Equal ’a 0t]

Note how the body of the theorem derives from the type of the term in the theorem declaration.
As discussed in Sections 19.1, 20.1, and 21.1, there are currently three uses for theorems:

1. As left to right rewrite rules. The type has the form (Equal lhs rhs) the lhs must be a Type
constructor call, or a type function call. The rhs is used to replace a term matching the lhs
when narrowing.

2. As a backchaining rule: P x -> Q y -> S x y where P, Q, and S are propositions. The
intended semantics of a back chaining theorem is if one is trying to establish (S x y) as a
predicate one may establish the set of predicates { (P x), (Q y) } instead.

3. As a refinement lemma: cond -> Equal f g -> (Equal x t,Equal y s) where f, g, s,
and t are arbitrary terms, but x and y, are variables. The intended semantics of a refinement
lemma is to add additional facts to the set of assumed truths. These new facts are simpler
in form (they equate variables to terms) than the old fact they are derived from.

22 Syntax Extensions

Many languages supply syntactic sugar for constructing homogeneous sequences and heteroge-
neous tuples. For example, in Haskell lists are often written with bracketed syntax, [1,2,3],
rather than a constructor function syntax, (Cons 1 (Cons 2 (Cons 3 Nil))), and tuples are of-
ten written as (5,"abc") and (2,True,[]) rather than (Pair 5 "abc") and (Triple 2 True []).
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In Ωmega we supply special syntax for seven different kinds of data, and allow users to use this
syntax for data they define themselves. Ωmega has special syntax for list-like, natural-number-
like, pair-like, record-like, unary-increment-like, unit-like and item-like types. Some examples
in the supported syntax are: [4,5]i, (2+n)j (4,True)k, {"a"=5, "b"=6}h, (x‘3)w, ()u, and
(42)l. In general, the syntax starts with list-like, natural-number-like, record-like, pair-like, or
unary-increment syntax, and is terminated by a tag. Unit-like and item-like syntax are special
cases of the pair-like syntax with zero or one item between parentheses. A user may specify that
a user defined type should be displayed using the special syntax with a given tag. Each tag is
associated with a set of functions (a different set for list-like, natural-number-like, record-like,
pair-like, and unary-increment types). Each type of syntax, has an associated tag-table, so the
same tag can be used once for each kind of syntax. Each term expands into a call of the functions
specified by the tag in the special syntax.

The list-like syntax associates two functions with each tag. These functions play the role
of Nil and Cons. For example if the tag ”i” is associated with the functions (C,N), then the
expansion is as follows:

[]i ---> N

[x,y,z]i ---> C x (C y (C z N))

[x ; xs]i ---> C x xs

[x,y ; zs]i ---> C x (C y zs)

The semicolon may only appear before the last element in the square brackets. In this case, the
last element stands for the tail of the resulting list. There is a left-associative variant of the
list-like syntax too, derived with LeftList, which is constructed in a way that the tail of the list
appears to the left: [t; 2, 1]i.

The natural-number-like syntax associates two functions with each tag. These functions play
the role of Zero and Succ. For example if the tag ”i” is associated with the functions (Z,S),
then the expansion is as follows:

4i ---> S(S(S(S Z)))

0i ---> Z

(2+x)i ---> S(S x)

For backward compatibility reasons, to represent the built in types Nat and Nat’, the syntax 4t

is equivalent to either 4t (S(S(S(S Z)))) in the type name space, and 4v (S(S(S(S Z)))) in the
value name space.

The pair-like syntax associates one function with each tag. This function plays the role of
a binary constructor. For example if the tag ”i” is associated with the function (P), then the
expansion is as follows:

(a,b)i ---> P a b

(a,b,c)i ---> P a (P b c)

(a,b,c,d)i ---> P a (P b (P c d))

The unit-like syntax is a nullary variant of the pair-like syntax, and the item-like syntax corre-
sponds to the unary variant. Following lines demonstrate their expansion:

()i ---> U

(a)i ---> I a
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The record-like syntax associates two functions with each tag. These functions play the role of
the constant RowNil and the ternary function RowCons. For example if the tag ”i” is associated
with the functions (RC,RN), then the expansion is as follows:

{}i ---> RN

{a=x,b=y}i ---> RC a x (RC b y RN)

{a=x ; xs}i ---> RC a x xs

{a=x,b=y ; zs}i ---> RC a x (RC b y zs)

The unary-increment syntax associates one function with each tag. This function plays the
role of an increment function Tick. For example if the tag ”w” is associated with the function
Tick, then the expansion is as follows:

(x‘0)w ---> x

(x‘1)w ---> Tick x

(x‘2)w ---> Tick(Tick x)

(x‘3)w ---> Tick(Tick(Tick x))

Syntactic extension can be applied to any GADT, at either the value or type level. The new
syntax can be used by the programmer for terms, types, or patterns. Ωmega uses the new syntax
to display such terms. The constructor based mechanism can also still be used. The tags are
specified using a deriving clause in a GADT. There are two styles of supported syntax derivations:
old-style, and new-style. The new-style is more expressive, and all old-style derivations can be
replaced by equivalent new-style ones. Eventually the old-style will be deprecated and removed
from the system.

22.1 Old-style Derivations

Old-style derivations specify a single tag to be associated with a single syntax extension for
a particular datatype. Using the old-style, each datatype can can be associated with a single
syntax extension, and the number of constructor functions of the datatype must agree with the
number of functions associated with that extension. For example to use the List extension the
datatype must have two constructors, and to use the Pair extension the datatype must have one
constructor.

22.1.1 Old-style List Example: Tuples are Lists that Reflect the Type of Their

Components

An example where the list-like extension is used both at the value and type level follows. It
generalizes the Prod-Tuple example from Section 11.

data Prod :: *1 ~> *1 where

Nil :: Prod a

Cons :: a ~> Prod a ~> Prod a

deriving List(a) -- the List tag "a" is associated with (Nil,Cons) of Prod

data Tuple :: forall (a:: *1). Nat ~> Prod a ~> *0 where

NIL :: Tuple Z Nil
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CONS :: a -> Tuple n l -> Tuple (S n) (Cons a l)

deriving List(b) -- the List tag "b" is associated with (NIL,CONS) of Tuple

We can construct value-level Tuple and type-level Prod using the special list-like syntax and the
tags “a” and “b”. A Tuple is a heterogenous list with indexed length. The type of the elements
in the list are reflected in the type of the list as a Prod at the type level. For example we evaluate
a value level-list, and ask the system to compute the kind of a type-level list.

prompt> [3,True,3.4]b

[3,True,3.4]b : Tuple 3t [Int,Bool,Float]a

prompt> :k [Int,Bool]a

[Int,Bool]a :: Prod *0

Note how the lists are both entered and displayed with the list-syntax with the appropriate
tags. We can even use the list-sytax as a pattern in a function definition.

testfun :: Tuple (n+2)t [Int,Bool; w]a -> (Int,Bool,Tuple n w)

testfun [x,y;zs]b = (x+1,not y,zs)

22.1.2 Old-style Nat Example: A n-ary Summing Function

An example of a type that makes good use of the natural-number like syntax is the type SumSpec.

data SumSpec :: *0 ~> *0 where

Zero :: SumSpec Int

Succ :: SumSpec a -> SumSpec (Int -> a)

deriving Nat(s) -- associates the Nat tag "s" with (Zero,Succ)

The idea behind SumSpec is that types of the terms in the series Zero, (Succ Zero), (Succ(Succ
Zero)), is each of the form SumSpec i, i.e. SumSpec Int, SumSpec(Int -> Int), SumSpec(Int
-> Int -> Int), etc. Each i in the series is the type of the corresponding function in the series
of functions below.

0

\ x -> x

\ x -> \ y -> x+y

\ x -> \ y -> \ z -> x+y+z

This series of terms are the functions that sum 0, 1, 2, 3, etc. integers. We can observe the
relationship between the types of the terms and the type indexes of SumSpec, by typing a series
of SumSpec examples into the Ωmega interactive loop.

prompt> 0s

0s : SumSpec Int

prompt> 1s

1s : SumSpec (Int -> Int)

prompt> 2s
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2s : SumSpec (Int -> Int -> Int)

prompt> 3s

3s : SumSpec (Int -> Int -> Int -> Int)

We can now write a generic function that sums any number of integers.

sum:: SumSpec a -> a

sum x = sumhelp x 0

where sumhelp:: SumSpec a -> Int -> a

sumhelp Zero n = n

sumhelp (Succ x) n = \ m -> sumhelp x (n+m)

By using the natural-number like syntax we get a pleasant interface to the use of sum. Observe
the example use in the interactive session below:

prompt> sum 0s

0 : Int

prompt> sum 1s 3

3 : Int

prompt> sum 2s 4 7

11 : Int

prompt> sum 3s 3 5 1

9 : Int

prompt> sum 3s 3 5

<fn> : Int -> Int

22.1.3 Old-style Record Example: Records and Rows

Finally, we demonstrate how using Tags and Labels (see Section 13) we can roll our own record
structures.

data Row :: a ~> b ~> *1 where

RNil :: Row x y

RCons :: x ~> y ~> Row x y ~> Row x y

deriving Record(r)

data Record :: Row Tag *0 ~> *0 where

RecNil :: Record RNil

RecCons :: Label a -> b -> Record r -> Record (RCons a b r)

deriving Record()

The Row and Record type are like the Prod and Tuple type, but they cons a pair of things on to
linear sequence, rather than a single thing. By specializing the first part of the pair to a Label

we can build labeled tuples or records.

prompt> {‘name="tim", ‘age=21}

{‘name="tim",‘age=21} : Record {‘name=[Char],‘age=Int}r
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Here we demonstrate that the tag for Records is the empty tag. The empty tag for Nat is
reserved for ordinary Int, the empty tag for List is reserved for ordinary lists, and the empty
tag for Pair is reserved for Ωmega’s builtin binary product. Further the empty tag for Unit is
reserved for Ωmega’s builtin unit value (and type), spelled as (), while empty tag for Item is the
regular parenthesis syntax for the grouping of expressions.

22.2 New-style Derivations

The old-style syntax extension allows the user to choose only one style of syntactic extension
per datatype declaration, and limits the number of constructors of the datatype to exactly the
number of syntax functions associated with the extension. The new-style of derivation lifts both
these restrictions.

22.2.1 New-style Unary Increment Example: Cdr

This example illustrates why it is often desireable to allow more constructors than those supported
by a single extension. It is inspired by the family of Lisp functions cdr, cddr, cdddr, cddddr, etc.
Which select the nth second component of a set of nested pairs, where n corresponds to the
number of ds. The idea is to write (x‘n)c as specification for the function (cdnr y), where c is the
syntax extension tag for the datatype. The idea is to support a Projection specification type,
such that Projection a b specifies a projection from the type a to the type b, and the function
cdr:: (Projection a b) -> a -> b. For example the partial applications of cdr will have
the following types:

cdr (Id‘0)p :: a -> a

cdr (Id‘1)p :: (a,b) -> b

cdr (Id‘2)p :: (a,(b,c)) -> c

cdr (Id‘3)p :: (a,(b,(c,d))) -> d

We define this by using the following datatype declaration with a new-style Tick extension.

data Projection :: *0 ~> *0 ~> *0 where

Car:: Projection e t -> Projection (e,s) t

Cdr:: Projection e t -> Projection (s,e) t

Id:: Projection t t

deriving syntax(p) Tick(Cdr)

In a new-style extension, the keyword syntax is followed by the tag, and the types of exten-
sions are followed by the names of the constructors that will be associated with those extension
functions. Thus (x‘2)p stands for (Cdr(Cdr x)). Note the types of a few terms constructed this
way:

zero = (Id‘0)p :: Projection a a

one = (Id‘1)p :: Projection (a,b) b

two = (Id‘2)p :: Projection (a,(b,c)) c
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Of course the purpose of this type is to serve as the specification for a family of cdr functions.
We write this below, illustrating that the syntax extension can also be used in the pattern matching
language.

cdr :: Projection a b -> a -> b

cdr Id x = x

cdr (Car x) (a,b) = cdr x a

cdr (x‘1)p (a,b) = cdr x b

22.2.2 New-style Multiple Syntax Example: Test

Finally we illustrate that one datatype can support multiple syntax extensions (albeit with the
same tag.)

data Test:: *0 where

Nil :: Test

Cons :: Test -> Test -> Test

RNil :: Test

RCons :: String -> Test -> Test -> Test

Zero :: Test

Succ :: Test -> Test

Pair :: Test -> Test -> Test

Next :: Test -> Test

A :: Test

Charge :: Float -> Test

deriving syntax(w) List(Nil,Cons) Nat(Zero,Succ)

Pair(Pair) Tick(Next) Record(RNil,RCons)

Unit(A) Item(Charge)

This allows one to write things like the following:

test = { "name" = ()w

, "age"= 2w

, "charge" = (25.7)w

, "xs" = [ (()w‘1)w ]w

, "ps" = (0w,1w)w }w

rather than the much more verbose

verbose = RCons "name" A (

RCons "age" (Succ (Succ Zero)) (

RCons "charge" (Charge 25.7) (

RCons "xs" (Cons (Next A) Nil) (

RCons "ps" (Pair Zero (Succ Zero)) RNil))))
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23 Level Polymorphism

Some times we wish to use the same structure at both the value and type level. One way to do
this is to build isomorphic, but different, data structures at different levels. In Ωmega, we can
define a structure to live at many levels. We call this level polymorphism. For example a Tree

type that lives at all levels can be defined by:

data Tree :: level n . *n ~> *n where

Tip :: a ~> Tree a

Fork :: Tree a ~> Tree a ~> Tree a

Levels are not types. A level variable can only be used as an argument to the * operator. Level
abstraction can only be introduced in the kind part of a data declaration, but level polymorphic
functions can be inferred from their use of constructor functions introduced in level polymorphic
data declarations.

In the example above, Ωmega adds the type constructor Tree at all type levels, and the
constructors Tip and Fork at the value level as well at all type levels. We can illustrate this by
evaluating a tree at the value level, and by asking Ωmega for the kind of a simliar term at the
type level.

prompt> Fork (Tip 3) (Tip 1)

(Fork (Tip 3) (Tip 1)) : Tree Int

prompt> :k Tip Int

Tip Int :: Tree *0

Another useful pattern is to define normal (*0) types indexable by types at all levels. For
example consider the kind of the type constructor Equal and the type of its constructor Eq.

Equal :: level b . forall (a:*(1+b)).a ~> a ~> *0

Eq :: level b . forall (a:*(1+b)) (c:a:*(1+b)).Equal c c

Without level polymorphism, the Equal type constructor could only witness equality between
types a single level, i.e. types classified by *0 but not *1. So (Equal Int Bool) is well formed
but (Equal Nat (Prod *0)) would not be, since both Nat and (Prod *0) are classified by *1.
For a useful example, the type of sameLabel could not be expressed using a level-monomorphic
Equal datatype.

sameLabel :: forall (a:Tag) (b:Tag).Label a -> Label b

-> Equal a b + DiffLabel a b

This is because the a and b are classified by Tag, and are not classified by *0. A similar restriction
would make Row kinds less useful without level polymorphism.

Row :: level d b . forall (a:*(2+b)) (c:*(2+d)).a ~> c ~> *1
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24 Tracing

The Ωmega system includes a number of type-checking time tracing mechanisms that work well
with the type-checking interactive loop (Section 16). The tracing mechanisms can be controlled
by using the :set and :clear command on the system modes. These commands are accessed as
one of the command level prompts (Section 15).

24.1 System Modes for Tracing

The commands level :set and :clear control the Ωmega system mode variables. The mode
variables control the tracing behavior of the system. The modes allow the user to display internal
and intermediate type information for debugging, or understanding purposes. The available modes
are:

• solving. Initial value = False. Turns on tracing in the predicate solving engine.

• predicate emission. Initial value = False. Reports the fact that a predicate has been
emitted. Predicates are collected at generalization sites, and are either solved, or abstracted
into constrained types.

• narrowing. Initial value = False. Shows the steps taken when narrowing. Useful for
debugging when narrowing does not return the result desired.

• theorem. Initial value = False. Reports when a lemma is added by a ’theorem’ declaration,
and when such a lemma is applicable.

• kind. Initial value = False. Displays kinds of subterms when using the :k or :t commands.

• unreachable. Initial value = False. Displays information when checking for unreachable
clauses.

• verbose. Initial value = False. For debugging the compiler.

To illustrate the use of the tracing modes, we will trace type checking the function app. Note
the insertion of the check keyword in the second clause.

app::List n a -> List m a -> List {plus n m} a

app Nil ys = ys

app (Cons x xs) ys = check Cons x (app xs ys)

This allows the user to selectively control when the tracing is to be in effect. Note in the
transcript below, the use of the :set narrow command, to turn narrowing tracing on, and then,
the use of the :q command, to quit the interactive debugger. Now as type-checking continues
from this point, narrowing trace information is printed. While tracing, the trace output is paused,
and the user is asked to step or continue.

*** Checking: Cons x (app xs ys)

*** expected type: List {plus (1+_c)t _m} _a

*** refinement: {_b=_a, _n=(1+_c)t}
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*** assumptions:

*** theorems:

check> :set narrow

check> :q

Norm {plus (1+_c)t _m} ---> (1+{plus _c _m})t

####################c

Solve By Narrowing: Equal {plus (1+_c)t _m} (1+{plus _c _m})t

Collected by type checking in scope case 9.

line: 219 column: 1

app (Cons x xs) ys = (Check Cons x (app x ...

Normal form: Equal (1+{plus _c _m})t (1+{plus _c _m})t

Assumptions:

Theorems:

-------------------------------------

25 Narrowing the list (looking for 3 solutions) found 0

Equal (1+{plus _c _m})t (1+{plus _c _m})t

with truths:

and()

press return to step, ’c’ to continue:

-------------------------------------

24 Narrowing the list (looking for 3 solutions) found 0

Equal {plus _c _m} {plus _c _m}

with truths:

and()

press return to step, ’c’ to continue:

*********************

Found a solution for:

Equal (1+{plus _c _m})t (1+{plus _c _m})t

Answers = {}

25 Freshness

Ωmega includes an experimental implementation of Pitts and Gabbay’s fresh types[GP02]. The
interface to this mechanism is the type Symbol, and the functions:

fresh:: Char -> Symbol
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swap:: Symbol -> Symbol -> a -> a

symbolEq:: Symbol -> Symbol -> Bool

freshen:: a -> (a,[(Symbol,Symbol)])

See the paper for how these might be used.

26 Resource Bounds

In Ωmega, there are several resource bounds that can be controlled by the user. The current
resource bounds control the number of steps taken while narrowing, and the number of times a
backchaining theorem can be applied. The narrowing bound is important because narrowing may
find an inifinite number of solutions to a certain problem, and the resource bound cuts off such
search. The backchaining bound is important because some theorems (especially commutative
and associative theorems) can lead to infinite rewriting sequences. These bounds are controlled
using the :bounds command in the toplevel loop. The command :bounds with no argument lists
the current resource bounds and their values. The command (:bounds bound n), sets the bound
bound to n. This is illustrated in the transcript below:

prompt> :bounds

narrow = 25 Number of steps to take when narrowing.

backchain = 4 Number of times a backChain lemma can be applied.

prompt> :bounds narrow 30

prompt> :bounds

narrow = 30 Number of steps to take when narrowing.

backchain = 4 Number of times a backChain lemma can be applied.

27 More Examples

In appendices A and B are two short Ωmega programs that illustrate the use of the theorem

declaration and the use of static constraints. In addition, there are many more examples of use
of Ωmega in the papers listed below:

• Meta-Programming with Typed Object-Language Representations[PL04]

• Meta-programming with Built-in Type Equality[SP04]

• Languages of the Future[She04]

• Programming with Static Invariants in Omega[SL04]

• GADTs, Refinement Types, and Dependent Programming[SHL05]

• Putting Curry-Howard to Work[She05b]

• Playing with Types[She05a]
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• Type-Level Computation Using Narrowing in Omega.

All these papers are available at http://web.cecs.pdx.edu/~sheard
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A Proofs by Induction over the Natural Numbers

–

----------------------------------------------------

-- This file depends upon the predefined GADTs

-- kind Nat = Z | S Nat

--

-- prop Nat’ :: Nat ~> *0 where

-- Z:: Nat’ Z

-- S:: forall (a:: Nat) . Nat’ a -> Nat’ (S a)

--

-- data Equal :: forall (a:: *1) . a ~> a ~> *0 where

-- Eq:: forall (b:: *1) (x:: b) . Equal x x

---------------------------------------------------

-- define plus as a recursive type-function

plus:: Nat ~> Nat ~> Nat

{plus Z m} = m

{plus (S n) m} = S {plus n m} -- deriving Relation Plus

---------------------------------------------------

-- plusZ is proved by induction. Note how we use

-- a recursive call "plusZ m" to produce the induction

-- hypothesis, and how we use the "theorem" decl.

plusZ :: Nat’ n -> Equal {plus n Z} n

plusZ Z = Eq

plusZ (x@(S m)) = Eq

where theorem indHyp = plusZ m

---------------------------------------------------

-- plusS is proved in a manner similar to plusZ
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plusS :: Nat’ n -> Equal {plus n (S m)} (S{plus n m})

plusS Z = Eq

plusS (S x) = Eq

where theorem ih = plusS x

---------------------------------------------------

-- we use both induction, and plusZ and plusS to

-- show that plus commutes.

plusCommutes :: Nat’ n -> Nat’ m -> Equal {plus n m} {plus m n}

plusCommutes Z m = Eq

where theorem lemma = plusZ m

plusCommutes (S x) m = Eq

where theorem plusS,

indHyp = plusCommutes x m

-------------------------------------------------

-- We can prove similar results, first by defining

-- plus as a ternary relation "Plus". This

-- relation is a witness type.

data Plus:: Nat ~> Nat ~> Nat ~> *0 where

Plus0 :: Plus Z m m

Plus1 :: Plus n m c -> Plus (S n) m (S c)

-------------------------------------------------

-- the relational analog to plusS

pluS:: Plus a b c -> Plus a (S b) (S c)

pluS Plus0 = Plus0

pluS (Plus1 p) = Plus1(pluS p)

------------------------------------------------

-- the relational analog to plusCommutes

plusCom:: Nat’ b -> Plus a b c -> Plus b a c

plusCom Z Plus0 = Plus0

plusCom (S n) Plus0 = Plus1(plusCom n Plus0)

plusCom Z (Plus1 p) = pluS(plusCom Z p)

plusCom (S n) (Plus1 p) = pluS(plusCom (S n) p)

--------------------------------------------------

-- To show that the two approaches are equivalent,

-- we show that we can convert or translate from
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-- each to the other.

trans:: Plus a b c -> Equal {plus a b} c

trans Plus0 = Eq

trans (Plus1 p) = Eq

where theorem indHyp = trans p

transInv :: Nat’ a -> Equal {plus a b} c -> Plus a b c

transInv Z Eq = Plus0

transInv (x@(S n)) (p@Eq) = Plus1(transInv n Eq)

---------------------------------------------------

-- Show that the relation Plus is functional, i.e.

-- if we know the first two arguments, we can

-- determine the third.

funcDepend:: (Plus a b c,Plus a b d) -> Equal c d

funcDepend (Plus0,Plus0) = Eq

funcDepend (Plus0,Plus1 p) = unreachable

funcDepend (Plus1 p,Plus0) = unreachable

funcDepend (Plus1 p,Plus1 q) =

case funcDepend(p,q) of

Eq -> Eq

--

B Quicksort Algorithm in Ωmega

–

--------------------------------------------------------

-- (LE n m) A witness that n is less than or equal to m

prop LE :: Nat ~> Nat ~> *0 where

Base_LE:: LE Z a

Step_LE:: LE a b -> LE (S a) (S b)

--------------------------------------------------------

-- A bounded sequence. The elements appear in no

-- particular order, but if a sequence has type

-- (BSeq min max), every element is between min and max

-- This is maintained by static constraints.

data BSeq :: Nat ~> Nat ~> *0 where

Nil :: LE min max => BSeq min max
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Cons :: (LE min m, LE m max) => Nat’ m -> BSeq min max -> BSeq min max

--------------------------------------------------------

-- Helper function for applying one of two functions

-- over a sum type, depending upon the sum injection.

mapP :: (a -> b) -> (c -> d) -> (a+c) -> (b+d)

mapP f g (L x) = L(f x)

mapP f g (R x) = R(g x)

------------------------------------------------------

-- Comparison of two Nat’ elements, returns one

-- of two possible witnesses.

compare :: Nat’ a -> Nat’ b -> (LE a b + LE b a)

compare Z _ = L Base_LE

compare (S x) Z = R Base_LE

compare (S x) (S y) = mapP Step_LE Step_LE (compare x y)

------------------------------------------------------

-- Split a bounded sequence into bounded sequences.

qsplit :: (LE min piv, LE piv max) =>

Nat’ piv -> BSeq min max -> (BSeq min piv,BSeq piv max)

qsplit piv Nil = (Nil,Nil)

qsplit piv (Cons x xs) =

case compare x piv of

L p1 -> (Cons x small, large)

R p1 -> (small, Cons x large)

where (small,large) = qsplit piv xs

------------------------------------------------------

-- A sorted list. Elements are statically guaranteed

-- to appear in ascending order. Note that a list with

-- type (SL min max) has (Nat’ min) as first element

-- and every other element less than or equal to max.

-- Note (Nat’ max) may not actually be in the list.

data SL :: Nat ~> Nat ~> *0 where

SNil :: SL x x

SCons :: LE min min’ => Nat’ min -> SL min’ max -> SL min max

------------------------------------------------------

-- Append two sorted sequences.
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app :: SL min piv -> SL piv max -> SL min max

app SNil ys = ys

app (SCons min xs) ys = SCons min (app xs ys)

------------------------------------------------------

-- Rearranges a bounded list into a sorted list. Note

-- qsort1 maintains the static invariant that the

-- first element of the bounded list is less than or

-- equal to the first element of the output.

qsort1 :: BSeq min max -> exists t . LE min t => SL t max

qsort1 Nil = Ex(SNil)

qsort1 (x@(Cons pivot tail)) = (Ex(app smaller’ (SCons pivot larger’)))

where (smaller,larger) = qsplit pivot tail

(Ex(smaller’)) = (qsort1 smaller)

(Ex(larger’)) = (qsort1 larger)

--
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