module Data.NonEmpty.Map ( T, insert, insertWith, singleton, member, size, elems, keys, keysSet, lookup, delete, minViewWithKey, maxViewWithKey, fromList, fromListWith, fromAscList, toAscList, fetch, flatten, union, unionLeft, unionRight, unionWith, unionLeftWith, unionRightWith, map, mapWithKey, ) where import qualified Data.NonEmpty.Set as NonEmptySet import qualified Data.NonEmpty.Class as C import qualified Data.NonEmpty as NonEmpty import qualified Data.Map as Map import Data.Map (Map, ) import Control.Monad (mzero, ) import Control.Applicative (liftA2, ) import Control.DeepSeq (NFData, rnf, ) import Data.Traversable (Traversable, traverse, ) import Data.Foldable (Foldable, foldMap, ) import Data.Monoid (mappend, ) import Data.Maybe (fromMaybe, ) import Data.Tuple.HT (forcePair, mapSnd, ) import Data.Ord.HT (comparing, ) import Prelude hiding (map, lookup, ) {- The first field will always contain the smallest element. -} data T k a = Cons (k, a) (Map k a) deriving (Eq, Ord) instance (Show k, Show a) => Show (T k a) where showsPrec p xs = showParen (p>10) $ showString "NonEmptyMap.fromList " . showsPrec 11 (toAscList xs) instance (Ord k) => Functor (T k) where fmap = map instance (Ord k) => Foldable (T k) where foldMap f (Cons x xs) = mappend (f (snd x)) (foldMap f xs) instance (Ord k) => Traversable (T k) where traverse f (Cons x xs) = liftA2 Cons (fmap ((,) (fst x)) $ f (snd x)) (traverse f xs) instance (NFData k, NFData a) => NFData (T k a) where rnf = C.rnf instance (NFData k) => C.NFData (T k) where rnf (Cons x xs) = rnf (x, C.rnf xs) insert :: Ord k => k -> a -> Map k a -> T k a insert = curry $ insertGen Map.insert fst insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> T k a insertWith f = curry $ insertGen (Map.insertWith f) (applyFst f) applyFst :: (a -> a -> a) -> ((k,a), (k,a)) -> (k,a) applyFst f ((k,a0),(_,a1)) = (k, f a0 a1) insertRight :: Ord k => (k,a) -> Map k a -> T k a insertRight = insertGen (Map.insertWith $ flip const) snd insertRightWith :: Ord k => (a -> a -> a) -> (k,a) -> Map k a -> T k a insertRightWith f = insertGen (Map.insertWith $ flip f) $ \((_,a0),(k,a1)) -> (k, f a1 a0) insertGen :: Ord k => (k -> a -> Map k a -> Map k a) -> (((k,a),(k,a)) -> (k,a)) -> (k,a) -> Map k a -> T k a insertGen ins select y xt = uncurry Cons $ fromMaybe (y, xt) $ do (x,xs) <- Map.minViewWithKey xt case comparing fst y x of GT -> return (x, uncurry ins y xs) EQ -> return (select (y,x), xs) LT -> mzero singleton :: k -> a -> T k a singleton k a = Cons (k,a) Map.empty member :: (Ord k) => k -> T k a -> Bool member y (Cons x xs) = y == fst x || Map.member y xs size :: T k a -> Int size (Cons _ xs) = 1 + Map.size xs elems :: T k a -> NonEmpty.T [] a elems (Cons x xs) = NonEmpty.cons (snd x) (Map.elems xs) keys :: T k a -> NonEmpty.T [] k keys (Cons x xs) = NonEmpty.cons (fst x) (Map.keys xs) -- 'insert' could be optimized to 'Cons' keysSet :: (Ord k) => T k a -> NonEmptySet.T k keysSet (Cons x xs) = NonEmptySet.insert (fst x) (Map.keysSet xs) lookup :: (Ord k) => k -> T k a -> Maybe a lookup y (Cons x xs) = if y == fst x then Just $ snd x else Map.lookup y xs delete :: (Ord k) => k -> T k a -> Map k a delete y (Cons x xs) = if y == fst x then xs else uncurry Map.insert x $ Map.delete y xs minViewWithKey :: T k a -> ((k,a), Map k a) minViewWithKey (Cons x xs) = (x,xs) maxViewWithKey :: (Ord k) => T k a -> ((k,a), Map k a) maxViewWithKey (Cons x xs) = forcePair $ case Map.maxViewWithKey xs of Nothing -> (x,xs) Just (y,ys) -> (y, uncurry Map.insert x ys) fromList :: (Ord k) => NonEmpty.T [] (k,a) -> T k a fromList (NonEmpty.Cons x xs) = insertRight x $ Map.fromList xs fromListWith :: (Ord k) => (a -> a -> a) -> NonEmpty.T [] (k,a) -> T k a fromListWith f (NonEmpty.Cons x xs) = insertRightWith f x $ Map.fromListWith f xs fromAscList :: (Ord k) => NonEmpty.T [] (k,a) -> T k a fromAscList (NonEmpty.Cons x xs) = Cons x $ Map.fromAscList xs toAscList :: T k a -> NonEmpty.T [] (k,a) toAscList (Cons x xs) = NonEmpty.cons x $ Map.toAscList xs fetch :: (Ord k) => Map k a -> Maybe (T k a) fetch = fmap (uncurry Cons) . Map.minViewWithKey flatten :: (Ord k) => T k a -> Map k a flatten (Cons x xs) = uncurry Map.insert x xs {- Could be implemented in terms of unionRight but that would require inspection of the plain Map using Map.minViewWithKey. -} union :: (Ord k) => T k a -> T k a -> T k a union (Cons x xs) (Cons y ys) = uncurry Cons $ case Map.union xs ys of zs -> case comparing fst x y of LT -> (x, uncurry (Map.insertWith (flip const)) y zs) GT -> (y, uncurry Map.insert x zs) EQ -> (x, zs) unionLeft :: (Ord k) => Map k a -> T k a -> T k a unionLeft xs (Cons y ys) = insertRight y $ Map.union xs ys unionRight :: (Ord k) => T k a -> Map k a -> T k a unionRight (Cons x xs) ys = uncurry insert x $ Map.union xs ys unionWith :: (Ord k) => (a -> a -> a) -> T k a -> T k a -> T k a unionWith f (Cons x xs) (Cons y ys) = uncurry Cons $ case Map.unionWith f xs ys of zs -> case comparing fst x y of LT -> (x, uncurry (Map.insertWith (flip f)) y zs) GT -> (y, uncurry (Map.insertWith f) x zs) EQ -> (applyFst f (x,y), zs) unionLeftWith :: (Ord k) => (a -> a -> a) -> Map k a -> T k a -> T k a unionLeftWith f xs (Cons y ys) = insertRightWith f y $ Map.unionWith f xs ys unionRightWith :: (Ord k) => (a -> a -> a) -> T k a -> Map k a -> T k a unionRightWith f (Cons x xs) ys = uncurry (insertWith f) x $ Map.unionWith f xs ys map :: (Ord k) => (a -> b) -> T k a -> T k b map f (Cons x xs) = Cons (mapSnd f x) (Map.map f xs) mapWithKey :: (Ord k) => (k -> a -> b) -> T k a -> T k b mapWithKey f (Cons x@(k,_a) xs) = Cons (k, uncurry f x) (Map.mapWithKey f xs)