{-# LANGUAGE RankNTypes, ScopedTypeVariables #-} -- | Suppose we are given mutually recursive data types @A@, @B@, and @C@. -- Here are some definitions of terms. -- -- [@child@] A maximal subexpression of @A@, @B@, or @C@. -- A child does not necessarily have to have the same type as the parent. -- @A@ might have some children of type @B@ and other children of type @C@ or even @A@. -- -- [@children@] A list of all children. -- In particular children are ordered from left to right. -- -- [@descendant@] Any subexpression of of @A@, @B@, or @C@. -- Specifically a descendant of an expression is either the expression itself or a descendant of one of its children. -- -- [@family@] A list of all descendant. -- The order is a context dependent. -- 'preorderFold' uses preorder, while 'postorderFold' and 'mapFamilyM' uses postorder. -- -- [@plate@] A plate is a record parametrized by a functor @f@ with one field of type -- @A -> f A@ for each type belonging to the mutually recursive set of types. For example, -- a plate for @A@, @B@, and @C@ would look like -- -- @ -- data ABCPlate f = ABCPlate -- { fieldA :: A -> f A -- , fieldB :: B -> f B -- , fieldC :: C -> f C -- } -- @ -- -- Although this above is the original motivation behind multiplate,but you can make -- any structure you want into a 'Multiplate' as long as you satisfy the two multiplate laws listed -- below. -- -- The names of the functions in this module are based on Sebastian Fischer's Refactoring Uniplate: -- <http://www-ps.informatik.uni-kiel.de/~sebf/projects/traversal.html> module Data.Generics.Multiplate where import Control.Applicative import Control.Monad import Control.Monad.Trans.Maybe import Data.Functor.Identity import Data.Functor.Constant import Data.Functor.Compose import Data.Monoid import Data.Maybe -- | A plate over @f@ consists of several fields of type @A -> f A@ for various @A@s. -- 'Projector' is the type of the projection functions of plates. type Projector p a = forall f. p f -> a -> f a -- | A 'Multiplate' is a constructor of kind @(* -> *) -> *@ operating on 'Applicative' functors -- having functions 'multiplate' and 'mkPlate' that satisfy the following two laws: -- -- (1) @ -- 'multiplate' 'purePlate' = 'purePlate' -- where -- 'purePlate' = 'mkPlate' (\\_ -> 'pure') -- @ -- -- (2) @ -- 'multiplate' ('composePlate' p1 p2) = 'composePlate' ('multiplate' p1) ('multiplate' p2) -- where -- 'composePlate' p1 p2 = 'mkPlate' (\\proj a -> ('Compose' (proj p1 ``fmap`` proj p2 a))) -- @ -- -- Note: By parametricity, it suffices for (1) to prove -- -- @ -- 'multiplate' ('mkPlate' (\\_ -> 'Identity')) = 'mkPlate' (\\_ -> 'Identity') -- @ -- class Multiplate p where -- | This is the heart of the Multiplate library. Given a plate of functions over some -- applicative functor @f@, create a new plate that applies these functions to the children -- of each data type in the plate. -- -- This process essentially defines the semantics what the children of these data types are. -- They don't have to literally be the syntactic children. For example, if a language supports -- quoted syntax, that quoted syntax behaves more like a literal than as a sub-expression. -- Therefore, although quoted expressions may syntactically be subexpressions, the user may -- chose to implement 'multiplate' so that they are not semantically considered subexpressions. multiplate :: (Applicative f) => p f -> p f -- | Given a generic builder creating an @a -> f a@, use the builder to construct each field -- of the plate @p f@. The builder may need a little help to construct a field of type -- @a -> f a@, so to help out the builder pass it the projection function for the field -- being built. -- -- e.g. Given a plate of type -- -- @ -- data ABCPlate f = ABCPlate { -- { fieldA :: A -> f B -- , fieldB :: B -> f B -- , fieldC :: C -> f C -- } -- @ -- -- the instance of 'mkPlate' for @ABCPlate@ should be -- -- @ -- 'mkPlate' builder = ABCPlate (builder fieldA) (builder fieldB) (builder fieldC) -- @ mkPlate :: (forall a. Projector p a -> (a -> f a)) -> p f -- | Given a natural transformation between two functors, @f@ and @g@, and a plate over -- @f@, compose the natural transformation with each field of the plate. applyNaturalTransform :: forall p f g. (Multiplate p) => (forall a. f a -> g a) -> p f -> p g applyNaturalTransform eta p = mkPlate build where build :: Projector p a -> a -> g a build proj = (eta . proj p) -- |Given an 'Applicative' @f@, 'purePlate' builds a plate -- over @f@ whose fields are all 'pure'. -- -- Generally 'purePlate' is used as the base of a record update. One constructs -- the expression -- -- @ -- 'purePlate' { /fieldOfInterest/ = \\a -> case a of -- | /constructorOfInterest/ -> /expr/ -- | _ -> 'pure' a -- } -- @ -- -- and this is a typical parameter that is passed to most functions in this library. purePlate :: (Multiplate p, Applicative f) => p f purePlate = mkPlate (\_ -> pure) -- |Given an 'Alternative' @f@, 'emptyPlate' builds a plate -- over @f@ whose fields are all @'const' 'empty'@. -- -- Generally 'emptyPlate' is used as the base of a record update. One constructs -- the expression -- -- @ -- 'emptyPlate' { /fieldOfInterest/ = \\a -> case a of -- | /constructorOfInterest/ -> /expr/ -- | _ -> 'empty' -- } -- @ -- -- and this is a typical parameter that is passed to 'evalFamily' and 'evalFamilyM'. emptyPlate :: (Multiplate p, Alternative f) => p f emptyPlate = mkPlate (\_ _ -> empty) -- | Given two plates over a monad @m@, the fields of the plate can be -- Kleisli composed ('<=<') fieldwise. kleisliComposePlate :: forall p m. (Multiplate p, Monad m) => p m -> p m -> p m kleisliComposePlate f1 f2 = mkPlate build where build :: Projector p a -> a -> m a build proj = (proj f1 <=< proj f2) -- | Given two plates, they can be composed fieldwise yielding the composite functor. composePlate :: forall p f g. (Multiplate p, Functor g) => p f -> p g -> p (Compose g f) composePlate f1 f2 = mkPlate build where build :: Projector p a -> a -> Compose g f a build proj a = (Compose (proj f1 `fmap` proj f2 a)) -- | Given two plates with one over the 'Identity' functor, the two plates -- can be composed fieldwise. composePlateRightId :: forall p f. (Multiplate p) => p f -> p Identity -> p f composePlateRightId f1 f2 = mkPlate build where build :: Projector p a -> a -> f a build proj = (proj f1 . traverseFor proj f2) -- | Given two plates with one over the 'Identity' functor, the two plates -- can be composed fieldwise. composePlateLeftId :: forall p f. (Multiplate p, Functor f) => p Identity -> p f -> p f composePlateLeftId f1 f2 = mkPlate build where build :: Projector p a -> a -> f a build proj a = (traverseFor proj f1 `fmap` proj f2 a) -- | Given two plates with one over the @'Constant' o@ applicative functor for a 'Monoid' @o@, -- each field of the plate can be pointwise appended with 'mappend'. appendPlate :: forall p o. (Multiplate p, Monoid o) => p (Constant o) -> p (Constant o) -> p (Constant o) appendPlate f1 f2 = mkPlate build where build :: Projector p a -> a -> Constant o a -- both <* and *> are the same for the Constant applicative functor build proj a = (proj f1 a <* proj f2 a) -- | Given a plate whose fields all return a 'Monoid' @o@, -- 'mChildren' produces a plate that returns the 'mconcat' -- of all the children of the input. mChildren :: forall p o. (Multiplate p, Monoid o) => p (Constant o) -> p (Constant o) mChildren = multiplate -- | Given a plate whose fields all return a 'Data.Monoid.Monoid' @o@, -- 'preorderFold' produces a plate that returns the 'Data.Monoid.mconcat' -- of the family of the input. The input itself produces the leftmost element -- of the concatenation, then this is followed by the family of the first child, then -- it is followed by the family of the second child, and so forth. preorderFold :: forall p o. (Multiplate p, Monoid o) => p (Constant o) -> p (Constant o) preorderFold f = f `appendPlate` multiplate (preorderFold f) -- | Given a plate whose fields all return a 'Data.Monoid.Monoid' @o@, -- 'preorderFold' produces a plate that returns the 'Data.Monoid.mconcat' -- of the family of the input. The concatenation sequence begins with -- the family of the first child, then -- it is followed by the family of the second child, and so forth until finally -- the input itself produces the rightmost element of the concatenation. postorderFold :: forall p o. (Multiplate p, Monoid o) => p (Constant o) -> p (Constant o) postorderFold f = multiplate (postorderFold f) `appendPlate` f -- | Given a plate whose fields transform each type, 'mapChildren' -- returns a plate whose fields transform the children of the input. mapChildren :: (Multiplate p) => p Identity -> p Identity mapChildren = multiplate -- | Given a plate whose fields transform each type, 'mapFamily' -- returns a plate whose fields transform the family of the input. -- The traversal proceeds bottom up, first transforming the families of -- the children, before finally transforming the value itself. mapFamily :: (Multiplate p) => p Identity -> p Identity mapFamily = mapFamilyM -- | Given a plate whose fields transform each type, 'mapChildrenM' -- returns a plate whose fields transform the children of the input. -- The processing is sequenced from the first child to the last child. mapChildrenM :: (Multiplate p, Applicative m, Monad m) => p m -> p m mapChildrenM = multiplate -- | Given a plate whose fields transform each type, 'mapFamilyM' -- returns a plate whose fields transform the family of the input. -- The sequencing is done in a depth-first postorder traversal. mapFamilyM :: (Multiplate p, Applicative m, Monad m) => p m -> p m mapFamilyM f = f `kleisliComposePlate` (multiplate (mapFamilyM f)) -- | Given a plate whose fields maybe transforms each type, 'evalFamily' -- returns a plate whose fields exhaustively transform the family of the input. -- The traversal proceeds bottom up, first transforming the families of -- the children. If a transformation succeeds then the result is re-'evalFamily'ed. -- -- A post-condition is that the input transform returns 'Nothing' on all family members -- of the output, or more formally -- -- @ -- 'preorderFold' ('applyNaturalTransform' t f) ``composePlate`` ('evalFamily' f) ⊑ 'purePlate' -- where -- t :: forall a. 'Maybe' a -> 'Constant' 'All' a -- t = 'Constant' '.' 'All' '.' 'isNothing' -- @ evalFamily :: (Multiplate p) => p Maybe -> p Identity evalFamily f = evalFamilyM (applyNaturalTransform (MaybeT . Identity) f) -- | Given a plate whose fields maybe transforms each type, 'evalFamilyM' -- returns a plate whose fields exhaustively transform the family of the input. -- The sequencing is done in a depth-first postorder traversal, but -- if a transformation succeeds then the result is re-'evalFamilyM'ed. evalFamilyM :: forall p m. (Multiplate p, Applicative m, Monad m) => p (MaybeT m) -> p m evalFamilyM f = go where go = mapFamilyM (mkPlate eval) eval :: Projector p a -> a -> m a eval proj a = maybe (return a) (proj go) =<< (runMaybeT (proj f a)) -- | Given a plate used for 'evalFamily', replace returning 'Nothing' -- with returning the input. This transforms plates suitable for 'evalFamily' -- into plates suitable form 'mapFamily'. always :: (Multiplate p) => p Maybe -> p Identity always f = alwaysM (applyNaturalTransform (MaybeT . Identity) f) -- | Given a plate used for 'evalFamilyM', replace returning 'Nothing' -- with returning the input. This transforms plates suitable for 'evalFamilyM' -- into plates suitable form 'mapFamilyM'. alwaysM :: forall p f. (Multiplate p, Functor f) => p (MaybeT f) -> p f alwaysM f = mkPlate build where build :: Projector p a -> a -> f a build proj a = (fromMaybe a) `fmap` (runMaybeT (proj f a)) -- | Given a projection function for a plate over the 'Identity' functor, -- upgrade the projection function to strip off the wrapper. traverseFor :: (Multiplate p) => Projector p a -> p Identity -> a -> a traverseFor proj f = runIdentity . proj f -- | Instantiate a projection function at a monad. traverseMFor :: (Multiplate p, Monad m) => Projector p a -> p m -> a -> m a traverseMFor proj f = proj f -- | Given a projection function for a plate over the @'Constant' o@ functor, -- upgrade the projection function to strip off the wrapper. foldFor :: (Multiplate p) => Projector p a -> p (Constant o) -> a -> o foldFor proj f = getConstant . proj f -- | Given a projection function for a plate over the @'Constant' o@ functor, -- and a continuation for @o@, upgrade the projection function to strip off the wrapper -- and run the continuation. -- -- Typically the continuation simply strips off a wrapper for @o@. unwrapFor :: (Multiplate p) => (o -> b) -> Projector p a -> p (Constant o) -> a -> b unwrapFor unwrapper proj f = unwrapper . foldFor proj f -- | Given a projection function for a plate over the @'Constant' ('Sum' n)@ functor, -- upgrade the projection function to strip off the wrappers. sumFor :: (Multiplate p) => Projector p a -> p (Constant (Sum n)) -> a -> n sumFor = unwrapFor getSum -- | Given a projection function for a plate over the @'Constant' ('Product' n)@ functor, -- upgrade the projection function to strip off the wrappers. productFor :: (Multiplate p) => Projector p a -> p (Constant (Product n)) -> a -> n productFor = unwrapFor getProduct -- | Given a projection function for a plate over the @'Constant' 'All'@ functor, -- upgrade the projection function to strip off the wrappers. allFor :: (Multiplate p) => Projector p a -> p (Constant All) -> a -> Bool allFor = unwrapFor getAll -- | Given a projection function for a plate over the @'Constant' 'Any'@ functor, -- upgrade the projection function to strip off the wrappers. anyFor :: (Multiplate p) => Projector p a -> p (Constant Any) -> a -> Bool anyFor = unwrapFor getAny -- | Given a projection function for a plate over the @'Constant' ('First' n)@ functor, -- upgrade the projection function to strip off the wrappers. firstFor :: (Multiplate p) => Projector p a -> p (Constant (First b)) -> a -> Maybe b firstFor = unwrapFor getFirst -- | Given a projection function for a plate over the @'Constant' ('Last' n)@ functor, -- upgrade the projection function to strip off the wrappers. lastFor :: (Multiplate p) => Projector p a -> p (Constant (Last b)) -> a -> Maybe b lastFor = unwrapFor getLast