-- | -- Module : Mcmc.Internal.Gamma -- Description : Generalized gamma function for automatic differentiation -- Copyright : (c) 2021 Dominik Schrempf -- License : GPL-3.0-or-later -- -- Maintainer : dominik.schrempf@gmail.com -- Stability : experimental -- Portability : portable -- -- Creation date: Tue Jul 13 12:53:09 2021. -- -- The code is taken from "Numeric.SpecFunctions". module Mcmc.Internal.Gamma ( logGammaG, ) where import Data.Typeable import qualified Data.Vector as VB import Numeric.Polynomial import Numeric.SpecFunctions import Unsafe.Coerce mSqrtEpsG :: RealFloat a => a mSqrtEpsG = 1.4901161193847656e-8 mEulerMascheroniG :: RealFloat a => a mEulerMascheroniG = 0.5772156649015328606065121 -- | Generalized version of the log gamma distribution. See -- 'Numeric.SpecFunctions.logGamma'. logGammaG :: (Typeable a, RealFloat a) => a -> a logGammaG z | typeOf z == typeOf (0 :: Double) = unsafeCoerce logGamma z | otherwise = logGammaNonDouble z {-# SPECIALIZE logGammaG :: Double -> Double #-} -- | See 'Numeric.SpecFunctions.logGamma'. logGammaNonDouble :: RealFloat a => a -> a logGammaNonDouble z | z <= 0 = 1 / 0 | z < mSqrtEpsG = log (1 / z - mEulerMascheroniG) | z < 0.5 = lgamma1_15G z (z - 1) - log z | z < 1 = lgamma15_2G z (z - 1) - log z | z <= 1.5 = lgamma1_15G (z - 1) (z - 2) | z < 2 = lgamma15_2G (z - 1) (z - 2) | z < 15 = lgammaSmallG z | otherwise = lanczosApproxG z lgamma1_15G :: RealFloat a => a -> a -> a lgamma1_15G zm1 zm2 = r * y + r * ( evaluatePolynomial zm1 tableLogGamma_1_15PG / evaluatePolynomial zm1 tableLogGamma_1_15QG ) where r = zm1 * zm2 y = 0.52815341949462890625 tableLogGamma_1_15PG :: RealFloat a => VB.Vector a tableLogGamma_1_15PG = VB.fromList [ 0.490622454069039543534e-1, -0.969117530159521214579e-1, -0.414983358359495381969e0, -0.406567124211938417342e0, -0.158413586390692192217e0, -0.240149820648571559892e-1, -0.100346687696279557415e-2 ] {-# NOINLINE tableLogGamma_1_15PG #-} tableLogGamma_1_15QG :: RealFloat a => VB.Vector a tableLogGamma_1_15QG = VB.fromList [ 1, 0.302349829846463038743e1, 0.348739585360723852576e1, 0.191415588274426679201e1, 0.507137738614363510846e0, 0.577039722690451849648e-1, 0.195768102601107189171e-2 ] {-# NOINLINE tableLogGamma_1_15QG #-} lgamma15_2G :: RealFloat a => a -> a -> a lgamma15_2G zm1 zm2 = r * y + r * ( evaluatePolynomial (-zm2) tableLogGamma_15_2PG / evaluatePolynomial (-zm2) tableLogGamma_15_2QG ) where r = zm1 * zm2 y = 0.452017307281494140625 tableLogGamma_15_2PG :: RealFloat a => VB.Vector a tableLogGamma_15_2PG = VB.fromList [ -0.292329721830270012337e-1, 0.144216267757192309184e0, -0.142440390738631274135e0, 0.542809694055053558157e-1, -0.850535976868336437746e-2, 0.431171342679297331241e-3 ] {-# NOINLINE tableLogGamma_15_2PG #-} tableLogGamma_15_2QG :: RealFloat a => VB.Vector a tableLogGamma_15_2QG = VB.fromList [ 1, -0.150169356054485044494e1, 0.846973248876495016101e0, -0.220095151814995745555e0, 0.25582797155975869989e-1, -0.100666795539143372762e-2, -0.827193521891290553639e-6 ] {-# NOINLINE tableLogGamma_15_2QG #-} lgammaSmallG :: RealFloat a => a -> a lgammaSmallG = go 0 where go acc z | z < 3 = acc + lgamma2_3G z | otherwise = go (acc + log zm1) zm1 where zm1 = z - 1 lgamma2_3G :: RealFloat a => a -> a lgamma2_3G z = r * y + r * ( evaluatePolynomial zm2 tableLogGamma_2_3PG / evaluatePolynomial zm2 tableLogGamma_2_3QG ) where r = zm2 * (z + 1) zm2 = z - 2 y = 0.158963680267333984375e0 tableLogGamma_2_3PG :: RealFloat a => VB.Vector a tableLogGamma_2_3PG = VB.fromList [ -0.180355685678449379109e-1, 0.25126649619989678683e-1, 0.494103151567532234274e-1, 0.172491608709613993966e-1, -0.259453563205438108893e-3, -0.541009869215204396339e-3, -0.324588649825948492091e-4 ] {-# NOINLINE tableLogGamma_2_3PG #-} tableLogGamma_2_3QG :: RealFloat a => VB.Vector a tableLogGamma_2_3QG = VB.fromList [ 1, 0.196202987197795200688e1, 0.148019669424231326694e1, 0.541391432071720958364e0, 0.988504251128010129477e-1, 0.82130967464889339326e-2, 0.224936291922115757597e-3, -0.223352763208617092964e-6 ] {-# NOINLINE tableLogGamma_2_3QG #-} lanczosApproxG :: RealFloat a => a -> a lanczosApproxG z = (log (z + g - 0.5) - 1) * (z - 0.5) + log (evalRatioG tableLanczosG z) where g = 6.024680040776729583740234375 tableLanczosG :: RealFloat a => VB.Vector (a, a) tableLanczosG = VB.fromList [ (56906521.91347156388090791033559122686859, 0), (103794043.1163445451906271053616070238554, 39916800), (86363131.28813859145546927288977868422342, 120543840), (43338889.32467613834773723740590533316085, 150917976), (14605578.08768506808414169982791359218571, 105258076), (3481712.15498064590882071018964774556468, 45995730), (601859.6171681098786670226533699352302507, 13339535), (75999.29304014542649875303443598909137092, 2637558), (6955.999602515376140356310115515198987526, 357423), (449.9445569063168119446858607650988409623, 32670), (19.51992788247617482847860966235652136208, 1925), (0.5098416655656676188125178644804694509993, 66), (0.006061842346248906525783753964555936883222, 1) ] {-# NOINLINE tableLanczosG #-} data LG a = LG !a !a evalRatioG :: RealFloat a => VB.Vector (a, a) -> a -> a evalRatioG coef x | x > 1 = fini $ VB.foldl' stepL (LG 0 0) coef | otherwise = fini $ VB.foldr' stepR (LG 0 0) coef where fini (LG num den) = num / den stepR (a, b) (LG num den) = LG (num * x + a) (den * x + b) stepL (LG num den) (a, b) = LG (num * rx + a) (den * rx + b) rx = recip x