-- |A series of transformations to convert first order logic formulas -- into (ultimately) Clause Normal Form. -- -- @ -- 1st order formula: -- ∀Y (∀X (taller(Y,X) | wise(X)) => wise(Y)) -- -- Simplify -- ∀Y (~∀X (taller(Y,X) | wise(X)) | wise(Y)) -- -- Move negations in - Negation Normal Form -- ∀Y (∃X (~taller(Y,X) & ~wise(X)) | wise(Y)) -- -- Move quantifiers out - Prenex Normal Form -- ∀Y (∃X ((~taller(Y,X) & ~wise(X)) | wise(Y))) -- -- Distribute disjunctions -- ∀Y ∃X ((~taller(Y,X) | wise(Y)) & (~wise(X) | wise(Y))) -- -- Skolemize - Skolem Normal Form -- ∀Y (~taller(Y,x(Y)) | wise(Y)) & (~wise(x(Y)) | wise(Y)) -- -- Convert to CNF -- { ~taller(Y,x(Y)) | wise(Y), -- ~wise(x(Y)) | wise(Y) } -- @ -- {-# LANGUAGE RankNTypes, ScopedTypeVariables #-} {-# OPTIONS -Wall #-} module Data.Logic.Normal.Clause ( clauseNormalForm , cnfTrace ) where import Data.List (intersperse) import Data.Logic.Classes.Constants (Constants(..)) import Data.Logic.Classes.Equals (AtomEq, prettyAtomEq) import Data.Logic.Classes.FirstOrder (FirstOrderFormula(..), prettyFirstOrder) import Data.Logic.Classes.Formula (Formula) import Data.Logic.Classes.Literal (Literal(..), prettyLit) import Data.Logic.Classes.Term (Term) import Data.Logic.Harrison.Normal (simpcnf') import Data.Logic.Harrison.Skolem (skolemNormalForm, SkolemT, pnf, nnf, simplify) import qualified Data.Map as Map import qualified Data.Set.Extra as Set import Text.PrettyPrint (Doc, hcat, vcat, text, nest, ($$), brackets, render) -- |Convert to Skolem Normal Form and then distribute the disjunctions over the conjunctions: -- -- @ -- Formula Rewrites to -- P | (Q & R) (P | Q) & (P | R) -- (Q & R) | P (Q | P) & (R | P) -- @ -- clauseNormalForm :: (Monad m, FirstOrderFormula formula atom v, Formula atom term v, Term term v f, Literal lit atom v, Eq formula, Ord lit) => formula -> SkolemT v term m (Set.Set (Set.Set lit)) clauseNormalForm fm = skolemNormalForm fm >>= return . simpcnf' cnfTrace :: forall m formula atom term v p f lit. (Monad m, FirstOrderFormula formula atom v, Formula atom term v, AtomEq atom p term, Term term v f, Literal lit atom v, Eq formula, Ord lit, Constants p, Eq p) => (v -> Doc) -> (p -> Doc) -> (f -> Doc) -> formula -> SkolemT v term m (String, Set.Set (Set.Set lit)) cnfTrace pv pp pf f = do snf <- skolemNormalForm f cnf <- clauseNormalForm f return (render (vcat [text "Original:" $$ nest 2 (prettyFirstOrder (prettyAtomEq pv pp pf) pv 0 f), text "Simplified:" $$ nest 2 (prettyFirstOrder (prettyAtomEq pv pp pf) pv 0 (simplify f)), text "Negation Normal Form:" $$ nest 2 (prettyFirstOrder (prettyAtomEq pv pp pf) pv 0 (nnf . simplify $ f)), text "Prenex Normal Form:" $$ nest 2 (prettyFirstOrder (prettyAtomEq pv pp pf) pv 0 (pnf f)), text "Skolem Normal Form:" $$ nest 2 (prettyFirstOrder (prettyAtomEq pv pp pf) pv 0 snf), text "Clause Normal Form:" $$ vcat (map prettyClause (fromSS cnf))]), cnf) where prettyClause (clause :: [lit]) = nest 2 . brackets . hcat . intersperse (text ", ") . map (nest 2 . brackets . prettyLit (prettyAtomEq pv pp pf) pv 0) $ clause fromSS = (map Set.toList) . Set.toList