{-# OPTIONS_GHC -fno-warn-orphans #-} {-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE TypeFamilies #-} module LLVM.Util.Arithmetic( TValue, (%==), (%/=), (%<), (%<=), (%>), (%>=), (%&&), (%||), (?), (??), retrn, set, ArithFunction, arithFunction, ToArithFunction, toArithFunction, recursiveFunction, CallIntrinsic, ) where import qualified LLVM.Util.Intrinsic as Intrinsic import qualified LLVM.Core as LLVM import LLVM.Util.Loop (mapVector, mapVector2) import LLVM.Core import qualified Type.Data.Num.Decimal.Number as Dec import Control.Monad (liftM2) -- |Synonym for @CodeGenFunction r (Value a)@. type TValue r a = CodeGenFunction r (Value a) infix 4 %==, %/=, %<, %<=, %>=, %> -- |Comparison functions. (%==), (%/=), (%<), (%<=), (%>), (%>=) :: (CmpRet a) => TValue r a -> TValue r a -> TValue r (CmpResult a) (%==) = binop $ LLVM.cmp CmpEQ (%/=) = binop $ LLVM.cmp CmpNE (%>) = binop $ LLVM.cmp CmpGT (%>=) = binop $ LLVM.cmp CmpGE (%<) = binop $ LLVM.cmp CmpLT (%<=) = binop $ LLVM.cmp CmpLE infixr 3 %&& infixr 2 %|| -- |Lazy and. (%&&) :: TValue r Bool -> TValue r Bool -> TValue r Bool a %&& b = a ? (b, return (valueOf False)) -- |Lazy or. (%||) :: TValue r Bool -> TValue r Bool -> TValue r Bool a %|| b = a ? (return (valueOf True), b) infix 0 ? -- |Conditional, returns first element of the pair when condition is true, otherwise second. (?) :: (IsFirstClass a) => TValue r Bool -> (TValue r a, TValue r a) -> TValue r a c ? (t, f) = do lt <- newBasicBlock lf <- newBasicBlock lj <- newBasicBlock c' <- c condBr c' lt lf defineBasicBlock lt rt <- t lt' <- getCurrentBasicBlock br lj defineBasicBlock lf rf <- f lf' <- getCurrentBasicBlock br lj defineBasicBlock lj phi [(rt, lt'), (rf, lf')] infix 0 ?? (??) :: (IsFirstClass a, CmpRet a) => TValue r (CmpResult a) -> (TValue r a, TValue r a) -> TValue r a c ?? (t, f) = do c' <- c t' <- t f' <- f select c' t' f' -- | Return a value from an 'arithFunction'. retrn :: (Ret (Value a) r) => TValue r a -> CodeGenFunction r () retrn x = x >>= ret -- | Use @x <- set $ ...@ to make a binding. set :: TValue r a -> CodeGenFunction r (TValue r a) set x = do x' <- x; return (return x') instance Eq (TValue r a) where (==) = error "CodeGenFunction Value: (==)" instance Ord (TValue r a) where compare = error "CodeGenFunction Value: compare" instance (IsArithmetic a, CmpRet a, Num a, IsConst a) => Num (TValue r a) where (+) = binop add (-) = binop sub (*) = binop mul negate = (>>= neg) abs x = x %< 0 ?? (-x, x) signum x = x %< 0 ?? (-1, x %> 0 ?? (1, 0)) fromInteger = return . valueOf . fromInteger instance (IsArithmetic a, CmpRet a, Num a, IsConst a) => Enum (TValue r a) where succ x = x + 1 pred x = x - 1 fromEnum _ = error "CodeGenFunction Value: fromEnum" toEnum = fromIntegral instance (IsArithmetic a, CmpRet a, Num a, IsConst a) => Real (TValue r a) where toRational _ = error "CodeGenFunction Value: toRational" instance (CmpRet a, Num a, IsConst a, IsInteger a) => Integral (TValue r a) where quot = binop idiv rem = binop irem quotRem x y = (quot x y, rem x y) toInteger _ = error "CodeGenFunction Value: toInteger" instance (CmpRet a, Fractional a, IsConst a, IsFloating a) => Fractional (TValue r a) where (/) = binop fdiv fromRational = return . valueOf . fromRational instance (CmpRet a, Fractional a, IsConst a, IsFloating a) => RealFrac (TValue r a) where properFraction _ = error "CodeGenFunction Value: properFraction" instance (CmpRet a, CallIntrinsic a, Floating a, IsConst a, IsFloating a) => Floating (TValue r a) where pi = return $ valueOf pi sqrt = callIntrinsic1 "sqrt" sin = callIntrinsic1 "sin" cos = callIntrinsic1 "cos" (**) = callIntrinsic2 "pow" exp = callIntrinsic1 "exp" log = callIntrinsic1 "log" asin _ = error "LLVM missing intrinsic: asin" acos _ = error "LLVM missing intrinsic: acos" atan _ = error "LLVM missing intrinsic: atan" sinh x = (exp x - exp (-x)) / 2 cosh x = (exp x + exp (-x)) / 2 asinh x = log (x + sqrt (x*x + 1)) acosh x = log (x + sqrt (x*x - 1)) atanh x = (log (1 + x) - log (1 - x)) / 2 instance (CmpRet a, CallIntrinsic a, RealFloat a, IsConst a, IsFloating a) => RealFloat (TValue r a) where floatRadix _ = floatRadix (undefined :: a) floatDigits _ = floatDigits (undefined :: a) floatRange _ = floatRange (undefined :: a) decodeFloat _ = error "CodeGenFunction Value: decodeFloat" encodeFloat _ _ = error "CodeGenFunction Value: encodeFloat" exponent _ = 0 scaleFloat 0 x = x scaleFloat _ _ = error "CodeGenFunction Value: scaleFloat" isNaN _ = error "CodeGenFunction Value: isNaN" isInfinite _ = error "CodeGenFunction Value: isInfinite" isDenormalized _ = error "CodeGenFunction Value: isDenormalized" isNegativeZero _ = error "CodeGenFunction Value: isNegativeZero" isIEEE _ = isIEEE (undefined :: a) binop :: (Value a -> Value b -> TValue r c) -> TValue r a -> TValue r b -> TValue r c binop op x y = do x' <- x y' <- y op x' y' ------------------------------------------- class ArithFunction r z a b | a -> b r z, b r z -> a where arithFunction' :: a -> b instance (Ret a r) => ArithFunction r a (CodeGenFunction r a) (CodeGenFunction r ()) where arithFunction' x = x >>= ret instance (ArithFunction r z b0 b1) => ArithFunction r z (CodeGenFunction r a -> b0) (a -> b1) where arithFunction' f = arithFunction' . f . return -- |Unlift a function with @TValue@ to have @Value@ arguments. arithFunction :: ArithFunction r z a b => a -> b arithFunction = arithFunction' class ToArithFunction r a b | a r -> b, b -> a r where toArithFunction' :: CodeGenFunction r (Call a) -> b instance ToArithFunction r (IO b) (CodeGenFunction r (Value b)) where toArithFunction' cl = cl >>= runCall instance ToArithFunction r b0 b1 => ToArithFunction r (a -> b0) (CodeGenFunction r (Value a) -> b1) where toArithFunction' cl x = toArithFunction' (liftM2 applyCall cl x) _toArithFunction2 :: Function (a -> b -> IO c) -> TValue r a -> TValue r b -> TValue r c _toArithFunction2 f tx ty = do x <- tx y <- ty runCall $ callFromFunction f `applyCall` x `applyCall` y -- |Lift a function from having @Value@ arguments to having @TValue@ arguments. toArithFunction :: (ToArithFunction r f g) => Function f -> g toArithFunction f = toArithFunction' $ return $ callFromFunction f ------------------------------------------- -- |Define a recursive 'arithFunction', gets passed itself as the first argument. recursiveFunction :: (IsFunction f, FunctionArgs f, code ~ FunctionCodeGen f, ArithFunction r1 z arith code, ToArithFunction r0 f g) => (g -> arith) -> CodeGenModule (Function f) recursiveFunction af = do f <- newFunction ExternalLinkage defineFunction f $ arithFunction $ af $ toArithFunction f return f ------------------------------------------- class CallIntrinsic a where callIntrinsic1' :: String -> Value a -> TValue r a callIntrinsic2' :: String -> Value a -> Value a -> TValue r a instance CallIntrinsic Float where callIntrinsic1' = Intrinsic.call1 callIntrinsic2' = Intrinsic.call2 instance CallIntrinsic Double where callIntrinsic1' = Intrinsic.call1 callIntrinsic2' = Intrinsic.call2 {- I think such a special case for certain systems would be better handled as in LLVM.Extra.Extension. (lemming) -} macOS :: Bool #if defined(__MACOS__) macOS = True #else macOS = False #endif instance (Dec.Positive n, IsPrimitive a, CallIntrinsic a) => CallIntrinsic (Vector n a) where callIntrinsic1' s x = if macOS && Dec.integerFromSingleton (Dec.singleton :: Dec.Singleton n) == 4 && elem s ["sqrt", "log", "exp", "sin", "cos", "tan"] then do op <- externFunction ("v" ++ s ++ "f") call op x else mapVector (callIntrinsic1' s) x callIntrinsic2' s = mapVector2 (callIntrinsic2' s) callIntrinsic1 :: (CallIntrinsic a) => String -> TValue r a -> TValue r a callIntrinsic1 s x = do x' <- x; callIntrinsic1' s x' callIntrinsic2 :: (CallIntrinsic a) => String -> TValue r a -> TValue r a -> TValue r a callIntrinsic2 s = binop (callIntrinsic2' s)