//===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares the Value class. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_VALUE_H #define LLVM_IR_VALUE_H #include "llvm-c/Types.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/Use.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/CBindingWrapping.h" #include "llvm/Support/Casting.h" #include #include #include namespace llvm { class APInt; class Argument; class BasicBlock; class Constant; class ConstantData; class ConstantAggregate; class DataLayout; class Function; class GlobalAlias; class GlobalIFunc; class GlobalObject; class GlobalValue; class GlobalVariable; class InlineAsm; class Instruction; class LLVMContext; class MDNode; class Module; class ModuleSlotTracker; class raw_ostream; template class StringMapEntry; class Twine; class Type; class User; using ValueName = StringMapEntry; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// /// LLVM Value Representation /// /// This is a very important LLVM class. It is the base class of all values /// computed by a program that may be used as operands to other values. Value is /// the super class of other important classes such as Instruction and Function. /// All Values have a Type. Type is not a subclass of Value. Some values can /// have a name and they belong to some Module. Setting the name on the Value /// automatically updates the module's symbol table. /// /// Every value has a "use list" that keeps track of which other Values are /// using this Value. A Value can also have an arbitrary number of ValueHandle /// objects that watch it and listen to RAUW and Destroy events. See /// llvm/IR/ValueHandle.h for details. class Value { Type *VTy; Use *UseList; friend class ValueAsMetadata; // Allow access to IsUsedByMD. friend class ValueHandleBase; const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast) unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? protected: /// Hold subclass data that can be dropped. /// /// This member is similar to SubclassData, however it is for holding /// information which may be used to aid optimization, but which may be /// cleared to zero without affecting conservative interpretation. unsigned char SubclassOptionalData : 7; private: /// Hold arbitrary subclass data. /// /// This member is defined by this class, but is not used for anything. /// Subclasses can use it to hold whatever state they find useful. This /// field is initialized to zero by the ctor. unsigned short SubclassData; protected: /// The number of operands in the subclass. /// /// This member is defined by this class, but not used for anything. /// Subclasses can use it to store their number of operands, if they have /// any. /// /// This is stored here to save space in User on 64-bit hosts. Since most /// instances of Value have operands, 32-bit hosts aren't significantly /// affected. /// /// Note, this should *NOT* be used directly by any class other than User. /// User uses this value to find the Use list. enum : unsigned { NumUserOperandsBits = 27 }; unsigned NumUserOperands : NumUserOperandsBits; // Use the same type as the bitfield above so that MSVC will pack them. unsigned IsUsedByMD : 1; unsigned HasName : 1; unsigned HasMetadata : 1; // Has metadata attached to this? unsigned HasHungOffUses : 1; unsigned HasDescriptor : 1; private: template // UseT == 'Use' or 'const Use' class use_iterator_impl { friend class Value; UseT *U; explicit use_iterator_impl(UseT *u) : U(u) {} public: using iterator_category = std::forward_iterator_tag; using value_type = UseT *; using difference_type = std::ptrdiff_t; using pointer = value_type *; using reference = value_type &; use_iterator_impl() : U() {} bool operator==(const use_iterator_impl &x) const { return U == x.U; } bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } use_iterator_impl &operator++() { // Preincrement assert(U && "Cannot increment end iterator!"); U = U->getNext(); return *this; } use_iterator_impl operator++(int) { // Postincrement auto tmp = *this; ++*this; return tmp; } UseT &operator*() const { assert(U && "Cannot dereference end iterator!"); return *U; } UseT *operator->() const { return &operator*(); } operator use_iterator_impl() const { return use_iterator_impl(U); } }; template // UserTy == 'User' or 'const User' class user_iterator_impl { use_iterator_impl UI; explicit user_iterator_impl(Use *U) : UI(U) {} friend class Value; public: using iterator_category = std::forward_iterator_tag; using value_type = UserTy *; using difference_type = std::ptrdiff_t; using pointer = value_type *; using reference = value_type &; user_iterator_impl() = default; bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } /// Returns true if this iterator is equal to user_end() on the value. bool atEnd() const { return *this == user_iterator_impl(); } user_iterator_impl &operator++() { // Preincrement ++UI; return *this; } user_iterator_impl operator++(int) { // Postincrement auto tmp = *this; ++*this; return tmp; } // Retrieve a pointer to the current User. UserTy *operator*() const { return UI->getUser(); } UserTy *operator->() const { return operator*(); } operator user_iterator_impl() const { return user_iterator_impl(*UI); } Use &getUse() const { return *UI; } }; protected: Value(Type *Ty, unsigned scid); /// Value's destructor should be virtual by design, but that would require /// that Value and all of its subclasses have a vtable that effectively /// duplicates the information in the value ID. As a size optimization, the /// destructor has been protected, and the caller should manually call /// deleteValue. ~Value(); // Use deleteValue() to delete a generic Value. public: Value(const Value &) = delete; Value &operator=(const Value &) = delete; /// Delete a pointer to a generic Value. void deleteValue(); /// Support for debugging, callable in GDB: V->dump() void dump() const; /// Implement operator<< on Value. /// @{ void print(raw_ostream &O, bool IsForDebug = false) const; void print(raw_ostream &O, ModuleSlotTracker &MST, bool IsForDebug = false) const; /// @} /// Print the name of this Value out to the specified raw_ostream. /// /// This is useful when you just want to print 'int %reg126', not the /// instruction that generated it. If you specify a Module for context, then /// even constanst get pretty-printed; for example, the type of a null /// pointer is printed symbolically. /// @{ void printAsOperand(raw_ostream &O, bool PrintType = true, const Module *M = nullptr) const; void printAsOperand(raw_ostream &O, bool PrintType, ModuleSlotTracker &MST) const; /// @} /// All values are typed, get the type of this value. Type *getType() const { return VTy; } /// All values hold a context through their type. LLVMContext &getContext() const; // All values can potentially be named. bool hasName() const { return HasName; } ValueName *getValueName() const; void setValueName(ValueName *VN); private: void destroyValueName(); enum class ReplaceMetadataUses { No, Yes }; void doRAUW(Value *New, ReplaceMetadataUses); void setNameImpl(const Twine &Name); public: /// Return a constant reference to the value's name. /// /// This guaranteed to return the same reference as long as the value is not /// modified. If the value has a name, this does a hashtable lookup, so it's /// not free. StringRef getName() const; /// Change the name of the value. /// /// Choose a new unique name if the provided name is taken. /// /// \param Name The new name; or "" if the value's name should be removed. void setName(const Twine &Name); /// Transfer the name from V to this value. /// /// After taking V's name, sets V's name to empty. /// /// \note It is an error to call V->takeName(V). void takeName(Value *V); #ifndef NDEBUG std::string getNameOrAsOperand() const; #endif /// Change all uses of this to point to a new Value. /// /// Go through the uses list for this definition and make each use point to /// "V" instead of "this". After this completes, 'this's use list is /// guaranteed to be empty. void replaceAllUsesWith(Value *V); /// Change non-metadata uses of this to point to a new Value. /// /// Go through the uses list for this definition and make each use point to /// "V" instead of "this". This function skips metadata entries in the list. void replaceNonMetadataUsesWith(Value *V); /// Go through the uses list for this definition and make each use point /// to "V" if the callback ShouldReplace returns true for the given Use. /// Unlike replaceAllUsesWith() this function does not support basic block /// values. void replaceUsesWithIf(Value *New, llvm::function_ref ShouldReplace); /// replaceUsesOutsideBlock - Go through the uses list for this definition and /// make each use point to "V" instead of "this" when the use is outside the /// block. 'This's use list is expected to have at least one element. /// Unlike replaceAllUsesWith() this function does not support basic block /// values. void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); //---------------------------------------------------------------------- // Methods for handling the chain of uses of this Value. // // Materializing a function can introduce new uses, so these methods come in // two variants: // The methods that start with materialized_ check the uses that are // currently known given which functions are materialized. Be very careful // when using them since you might not get all uses. // The methods that don't start with materialized_ assert that modules is // fully materialized. void assertModuleIsMaterializedImpl() const; // This indirection exists so we can keep assertModuleIsMaterializedImpl() // around in release builds of Value.cpp to be linked with other code built // in debug mode. But this avoids calling it in any of the release built code. void assertModuleIsMaterialized() const { #ifndef NDEBUG assertModuleIsMaterializedImpl(); #endif } bool use_empty() const { assertModuleIsMaterialized(); return UseList == nullptr; } bool materialized_use_empty() const { return UseList == nullptr; } using use_iterator = use_iterator_impl; using const_use_iterator = use_iterator_impl; use_iterator materialized_use_begin() { return use_iterator(UseList); } const_use_iterator materialized_use_begin() const { return const_use_iterator(UseList); } use_iterator use_begin() { assertModuleIsMaterialized(); return materialized_use_begin(); } const_use_iterator use_begin() const { assertModuleIsMaterialized(); return materialized_use_begin(); } use_iterator use_end() { return use_iterator(); } const_use_iterator use_end() const { return const_use_iterator(); } iterator_range materialized_uses() { return make_range(materialized_use_begin(), use_end()); } iterator_range materialized_uses() const { return make_range(materialized_use_begin(), use_end()); } iterator_range uses() { assertModuleIsMaterialized(); return materialized_uses(); } iterator_range uses() const { assertModuleIsMaterialized(); return materialized_uses(); } bool user_empty() const { assertModuleIsMaterialized(); return UseList == nullptr; } using user_iterator = user_iterator_impl; using const_user_iterator = user_iterator_impl; user_iterator materialized_user_begin() { return user_iterator(UseList); } const_user_iterator materialized_user_begin() const { return const_user_iterator(UseList); } user_iterator user_begin() { assertModuleIsMaterialized(); return materialized_user_begin(); } const_user_iterator user_begin() const { assertModuleIsMaterialized(); return materialized_user_begin(); } user_iterator user_end() { return user_iterator(); } const_user_iterator user_end() const { return const_user_iterator(); } User *user_back() { assertModuleIsMaterialized(); return *materialized_user_begin(); } const User *user_back() const { assertModuleIsMaterialized(); return *materialized_user_begin(); } iterator_range materialized_users() { return make_range(materialized_user_begin(), user_end()); } iterator_range materialized_users() const { return make_range(materialized_user_begin(), user_end()); } iterator_range users() { assertModuleIsMaterialized(); return materialized_users(); } iterator_range users() const { assertModuleIsMaterialized(); return materialized_users(); } /// Return true if there is exactly one use of this value. /// /// This is specialized because it is a common request and does not require /// traversing the whole use list. bool hasOneUse() const { return hasSingleElement(uses()); } /// Return true if this Value has exactly N uses. bool hasNUses(unsigned N) const; /// Return true if this value has N uses or more. /// /// This is logically equivalent to getNumUses() >= N. bool hasNUsesOrMore(unsigned N) const; /// Return true if there is exactly one user of this value. /// /// Note that this is not the same as "has one use". If a value has one use, /// then there certainly is a single user. But if value has several uses, /// it is possible that all uses are in a single user, or not. /// /// This check is potentially costly, since it requires traversing, /// in the worst case, the whole use list of a value. bool hasOneUser() const; /// Return true if there is exactly one use of this value that cannot be /// dropped. Use *getSingleUndroppableUse(); const Use *getSingleUndroppableUse() const { return const_cast(this)->getSingleUndroppableUse(); } /// Return true if there is exactly one unique user of this value that cannot be /// dropped (that user can have multiple uses of this value). User *getUniqueUndroppableUser(); const User *getUniqueUndroppableUser() const { return const_cast(this)->getUniqueUndroppableUser(); } /// Return true if there this value. /// /// This is specialized because it is a common request and does not require /// traversing the whole use list. bool hasNUndroppableUses(unsigned N) const; /// Return true if this value has N uses or more. /// /// This is logically equivalent to getNumUses() >= N. bool hasNUndroppableUsesOrMore(unsigned N) const; /// Remove every uses that can safely be removed. /// /// This will remove for example uses in llvm.assume. /// This should be used when performing want to perform a tranformation but /// some Droppable uses pervent it. /// This function optionally takes a filter to only remove some droppable /// uses. void dropDroppableUses(llvm::function_ref ShouldDrop = [](const Use *) { return true; }); /// Remove every use of this value in \p User that can safely be removed. void dropDroppableUsesIn(User &Usr); /// Remove the droppable use \p U. static void dropDroppableUse(Use &U); /// Check if this value is used in the specified basic block. bool isUsedInBasicBlock(const BasicBlock *BB) const; /// This method computes the number of uses of this Value. /// /// This is a linear time operation. Use hasOneUse, hasNUses, or /// hasNUsesOrMore to check for specific values. unsigned getNumUses() const; /// This method should only be used by the Use class. void addUse(Use &U) { U.addToList(&UseList); } /// Concrete subclass of this. /// /// An enumeration for keeping track of the concrete subclass of Value that /// is actually instantiated. Values of this enumeration are kept in the /// Value classes SubclassID field. They are used for concrete type /// identification. enum ValueTy { #define HANDLE_VALUE(Name) Name##Val, #include "llvm/IR/Value.def" // Markers: #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, #include "llvm/IR/Value.def" }; /// Return an ID for the concrete type of this object. /// /// This is used to implement the classof checks. This should not be used /// for any other purpose, as the values may change as LLVM evolves. Also, /// note that for instructions, the Instruction's opcode is added to /// InstructionVal. So this means three things: /// # there is no value with code InstructionVal (no opcode==0). /// # there are more possible values for the value type than in ValueTy enum. /// # the InstructionVal enumerator must be the highest valued enumerator in /// the ValueTy enum. unsigned getValueID() const { return SubclassID; } /// Return the raw optional flags value contained in this value. /// /// This should only be used when testing two Values for equivalence. unsigned getRawSubclassOptionalData() const { return SubclassOptionalData; } /// Clear the optional flags contained in this value. void clearSubclassOptionalData() { SubclassOptionalData = 0; } /// Check the optional flags for equality. bool hasSameSubclassOptionalData(const Value *V) const { return SubclassOptionalData == V->SubclassOptionalData; } /// Return true if there is a value handle associated with this value. bool hasValueHandle() const { return HasValueHandle; } /// Return true if there is metadata referencing this value. bool isUsedByMetadata() const { return IsUsedByMD; } protected: /// Get the current metadata attachments for the given kind, if any. /// /// These functions require that the value have at most a single attachment /// of the given kind, and return \c nullptr if such an attachment is missing. /// @{ MDNode *getMetadata(unsigned KindID) const; MDNode *getMetadata(StringRef Kind) const; /// @} /// Appends all attachments with the given ID to \c MDs in insertion order. /// If the Value has no attachments with the given ID, or if ID is invalid, /// leaves MDs unchanged. /// @{ void getMetadata(unsigned KindID, SmallVectorImpl &MDs) const; void getMetadata(StringRef Kind, SmallVectorImpl &MDs) const; /// @} /// Appends all metadata attached to this value to \c MDs, sorting by /// KindID. The first element of each pair returned is the KindID, the second /// element is the metadata value. Attachments with the same ID appear in /// insertion order. void getAllMetadata(SmallVectorImpl> &MDs) const; /// Return true if this value has any metadata attached to it. bool hasMetadata() const { return (bool)HasMetadata; } /// Return true if this value has the given type of metadata attached. /// @{ bool hasMetadata(unsigned KindID) const { return getMetadata(KindID) != nullptr; } bool hasMetadata(StringRef Kind) const { return getMetadata(Kind) != nullptr; } /// @} /// Set a particular kind of metadata attachment. /// /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or /// replacing it if it already exists. /// @{ void setMetadata(unsigned KindID, MDNode *Node); void setMetadata(StringRef Kind, MDNode *Node); /// @} /// Add a metadata attachment. /// @{ void addMetadata(unsigned KindID, MDNode &MD); void addMetadata(StringRef Kind, MDNode &MD); /// @} /// Erase all metadata attachments with the given kind. /// /// \returns true if any metadata was removed. bool eraseMetadata(unsigned KindID); /// Erase all metadata attached to this Value. void clearMetadata(); public: /// Return true if this value is a swifterror value. /// /// swifterror values can be either a function argument or an alloca with a /// swifterror attribute. bool isSwiftError() const; /// Strip off pointer casts, all-zero GEPs and address space casts. /// /// Returns the original uncasted value. If this is called on a non-pointer /// value, it returns 'this'. const Value *stripPointerCasts() const; Value *stripPointerCasts() { return const_cast( static_cast(this)->stripPointerCasts()); } /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases. /// /// Returns the original uncasted value. If this is called on a non-pointer /// value, it returns 'this'. const Value *stripPointerCastsAndAliases() const; Value *stripPointerCastsAndAliases() { return const_cast( static_cast(this)->stripPointerCastsAndAliases()); } /// Strip off pointer casts, all-zero GEPs and address space casts /// but ensures the representation of the result stays the same. /// /// Returns the original uncasted value with the same representation. If this /// is called on a non-pointer value, it returns 'this'. const Value *stripPointerCastsSameRepresentation() const; Value *stripPointerCastsSameRepresentation() { return const_cast(static_cast(this) ->stripPointerCastsSameRepresentation()); } /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and /// invariant group info. /// /// Returns the original uncasted value. If this is called on a non-pointer /// value, it returns 'this'. This function should be used only in /// Alias analysis. const Value *stripPointerCastsForAliasAnalysis() const; Value *stripPointerCastsForAliasAnalysis() { return const_cast(static_cast(this) ->stripPointerCastsForAliasAnalysis()); } /// Strip off pointer casts and all-constant inbounds GEPs. /// /// Returns the original pointer value. If this is called on a non-pointer /// value, it returns 'this'. const Value *stripInBoundsConstantOffsets() const; Value *stripInBoundsConstantOffsets() { return const_cast( static_cast(this)->stripInBoundsConstantOffsets()); } /// Accumulate the constant offset this value has compared to a base pointer. /// Only 'getelementptr' instructions (GEPs) are accumulated but other /// instructions, e.g., casts, are stripped away as well. /// The accumulated constant offset is added to \p Offset and the base /// pointer is returned. /// /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for /// the address space of 'this' pointer value, e.g., use /// DataLayout::getIndexTypeSizeInBits(Ty). /// /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and /// accumulated even if the GEP is not "inbounds". /// /// If \p AllowInvariantGroup is true then this method also looks through /// strip.invariant.group and launder.invariant.group intrinsics. /// /// If \p ExternalAnalysis is provided it will be used to calculate a offset /// when a operand of GEP is not constant. /// For example, for a value \p ExternalAnalysis might try to calculate a /// lower bound. If \p ExternalAnalysis is successful, it should return true. /// /// If this is called on a non-pointer value, it returns 'this' and the /// \p Offset is not modified. /// /// Note that this function will never return a nullptr. It will also never /// manipulate the \p Offset in a way that would not match the difference /// between the underlying value and the returned one. Thus, if no constant /// offset was found, the returned value is the underlying one and \p Offset /// is unchanged. const Value *stripAndAccumulateConstantOffsets( const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup = false, function_ref ExternalAnalysis = nullptr) const; Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup = false) { return const_cast( static_cast(this)->stripAndAccumulateConstantOffsets( DL, Offset, AllowNonInbounds, AllowInvariantGroup)); } /// This is a wrapper around stripAndAccumulateConstantOffsets with the /// in-bounds requirement set to false. const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const { return stripAndAccumulateConstantOffsets(DL, Offset, /* AllowNonInbounds */ false); } Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) { return stripAndAccumulateConstantOffsets(DL, Offset, /* AllowNonInbounds */ false); } /// Strip off pointer casts and inbounds GEPs. /// /// Returns the original pointer value. If this is called on a non-pointer /// value, it returns 'this'. const Value *stripInBoundsOffsets(function_ref Func = [](const Value *) {}) const; inline Value *stripInBoundsOffsets(function_ref Func = [](const Value *) {}) { return const_cast( static_cast(this)->stripInBoundsOffsets(Func)); } /// Return true if the memory object referred to by V can by freed in the /// scope for which the SSA value defining the allocation is statically /// defined. E.g. deallocation after the static scope of a value does not /// count, but a deallocation before that does. bool canBeFreed() const; /// Returns the number of bytes known to be dereferenceable for the /// pointer value. /// /// If CanBeNull is set by this function the pointer can either be null or be /// dereferenceable up to the returned number of bytes. /// /// IF CanBeFreed is true, the pointer is known to be dereferenceable at /// point of definition only. Caller must prove that allocation is not /// deallocated between point of definition and use. uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const; /// Returns an alignment of the pointer value. /// /// Returns an alignment which is either specified explicitly, e.g. via /// align attribute of a function argument, or guaranteed by DataLayout. Align getPointerAlignment(const DataLayout &DL) const; /// Translate PHI node to its predecessor from the given basic block. /// /// If this value is a PHI node with CurBB as its parent, return the value in /// the PHI node corresponding to PredBB. If not, return ourself. This is /// useful if you want to know the value something has in a predecessor /// block. const Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const; Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { return const_cast( static_cast(this)->DoPHITranslation(CurBB, PredBB)); } /// The maximum alignment for instructions. /// /// This is the greatest alignment value supported by load, store, and alloca /// instructions, and global values. static constexpr unsigned MaxAlignmentExponent = 32; static constexpr uint64_t MaximumAlignment = 1ULL << MaxAlignmentExponent; /// Mutate the type of this Value to be of the specified type. /// /// Note that this is an extremely dangerous operation which can create /// completely invalid IR very easily. It is strongly recommended that you /// recreate IR objects with the right types instead of mutating them in /// place. void mutateType(Type *Ty) { VTy = Ty; } /// Sort the use-list. /// /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is /// expected to compare two \a Use references. template void sortUseList(Compare Cmp); /// Reverse the use-list. void reverseUseList(); private: /// Merge two lists together. /// /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes /// "equal" items from L before items from R. /// /// \return the first element in the list. /// /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update). template static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { Use *Merged; Use **Next = &Merged; while (true) { if (!L) { *Next = R; break; } if (!R) { *Next = L; break; } if (Cmp(*R, *L)) { *Next = R; Next = &R->Next; R = R->Next; } else { *Next = L; Next = &L->Next; L = L->Next; } } return Merged; } protected: unsigned short getSubclassDataFromValue() const { return SubclassData; } void setValueSubclassData(unsigned short D) { SubclassData = D; } }; struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } }; /// Use this instead of std::unique_ptr or std::unique_ptr. /// Those don't work because Value and Instruction's destructors are protected, /// aren't virtual, and won't destroy the complete object. using unique_value = std::unique_ptr; inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { V.print(OS); return OS; } void Use::set(Value *V) { if (Val) removeFromList(); Val = V; if (V) V->addUse(*this); } Value *Use::operator=(Value *RHS) { set(RHS); return RHS; } const Use &Use::operator=(const Use &RHS) { set(RHS.Val); return *this; } template void Value::sortUseList(Compare Cmp) { if (!UseList || !UseList->Next) // No need to sort 0 or 1 uses. return; // Note: this function completely ignores Prev pointers until the end when // they're fixed en masse. // Create a binomial vector of sorted lists, visiting uses one at a time and // merging lists as necessary. const unsigned MaxSlots = 32; Use *Slots[MaxSlots]; // Collect the first use, turning it into a single-item list. Use *Next = UseList->Next; UseList->Next = nullptr; unsigned NumSlots = 1; Slots[0] = UseList; // Collect all but the last use. while (Next->Next) { Use *Current = Next; Next = Current->Next; // Turn Current into a single-item list. Current->Next = nullptr; // Save Current in the first available slot, merging on collisions. unsigned I; for (I = 0; I < NumSlots; ++I) { if (!Slots[I]) break; // Merge two lists, doubling the size of Current and emptying slot I. // // Since the uses in Slots[I] originally preceded those in Current, send // Slots[I] in as the left parameter to maintain a stable sort. Current = mergeUseLists(Slots[I], Current, Cmp); Slots[I] = nullptr; } // Check if this is a new slot. if (I == NumSlots) { ++NumSlots; assert(NumSlots <= MaxSlots && "Use list bigger than 2^32"); } // Found an open slot. Slots[I] = Current; } // Merge all the lists together. assert(Next && "Expected one more Use"); assert(!Next->Next && "Expected only one Use"); UseList = Next; for (unsigned I = 0; I < NumSlots; ++I) if (Slots[I]) // Since the uses in Slots[I] originally preceded those in UseList, send // Slots[I] in as the left parameter to maintain a stable sort. UseList = mergeUseLists(Slots[I], UseList, Cmp); // Fix the Prev pointers. for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { I->Prev = Prev; Prev = &I->Next; } } // isa - Provide some specializations of isa so that we don't have to include // the subtype header files to test to see if the value is a subclass... // template <> struct isa_impl { static inline bool doit(const Value &Val) { static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal"); return Val.getValueID() <= Value::ConstantLastVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() >= Value::ConstantDataFirstVal && Val.getValueID() <= Value::ConstantDataLastVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() >= Value::ConstantAggregateFirstVal && Val.getValueID() <= Value::ConstantAggregateLastVal; } }; template <> struct isa_impl { static inline bool doit (const Value &Val) { return Val.getValueID() == Value::ArgumentVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::InlineAsmVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() >= Value::InstructionVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::BasicBlockVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::FunctionVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::GlobalVariableVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::GlobalAliasVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return Val.getValueID() == Value::GlobalIFuncVal; } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return isa(Val) || isa(Val); } }; template <> struct isa_impl { static inline bool doit(const Value &Val) { return isa(Val) || isa(Val) || isa(Val); } }; // Create wrappers for C Binding types (see CBindingWrapping.h). DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef) // Specialized opaque value conversions. inline Value **unwrap(LLVMValueRef *Vals) { return reinterpret_cast(Vals); } template inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { #ifndef NDEBUG for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) unwrap(*I); // For side effect of calling assert on invalid usage. #endif (void)Length; return reinterpret_cast(Vals); } inline LLVMValueRef *wrap(const Value **Vals) { return reinterpret_cast(const_cast(Vals)); } } // end namespace llvm #endif // LLVM_IR_VALUE_H