//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the IRBuilder class, which is used as a convenient way // to create LLVM instructions with a consistent and simplified interface. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_IRBUILDER_H #define LLVM_IR_IRBUILDER_H #include "llvm-c/Types.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantFolder.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/FPEnv.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/CBindingWrapping.h" #include "llvm/Support/Casting.h" #include #include #include #include #include namespace llvm { class APInt; class Use; /// This provides the default implementation of the IRBuilder /// 'InsertHelper' method that is called whenever an instruction is created by /// IRBuilder and needs to be inserted. /// /// By default, this inserts the instruction at the insertion point. class IRBuilderDefaultInserter { public: virtual ~IRBuilderDefaultInserter(); virtual void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, BasicBlock::iterator InsertPt) const { if (BB) I->insertInto(BB, InsertPt); I->setName(Name); } }; /// Provides an 'InsertHelper' that calls a user-provided callback after /// performing the default insertion. class IRBuilderCallbackInserter : public IRBuilderDefaultInserter { std::function Callback; public: ~IRBuilderCallbackInserter() override; IRBuilderCallbackInserter(std::function Callback) : Callback(std::move(Callback)) {} void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, BasicBlock::iterator InsertPt) const override { IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); Callback(I); } }; /// Common base class shared among various IRBuilders. class IRBuilderBase { /// Pairs of (metadata kind, MDNode *) that should be added to all newly /// created instructions, like !dbg metadata. SmallVector, 2> MetadataToCopy; /// Add or update the an entry (Kind, MD) to MetadataToCopy, if \p MD is not /// null. If \p MD is null, remove the entry with \p Kind. void AddOrRemoveMetadataToCopy(unsigned Kind, MDNode *MD) { if (!MD) { erase_if(MetadataToCopy, [Kind](const std::pair &KV) { return KV.first == Kind; }); return; } for (auto &KV : MetadataToCopy) if (KV.first == Kind) { KV.second = MD; return; } MetadataToCopy.emplace_back(Kind, MD); } protected: BasicBlock *BB; BasicBlock::iterator InsertPt; LLVMContext &Context; const IRBuilderFolder &Folder; const IRBuilderDefaultInserter &Inserter; MDNode *DefaultFPMathTag; FastMathFlags FMF; bool IsFPConstrained = false; fp::ExceptionBehavior DefaultConstrainedExcept = fp::ebStrict; RoundingMode DefaultConstrainedRounding = RoundingMode::Dynamic; ArrayRef DefaultOperandBundles; public: IRBuilderBase(LLVMContext &context, const IRBuilderFolder &Folder, const IRBuilderDefaultInserter &Inserter, MDNode *FPMathTag, ArrayRef OpBundles) : Context(context), Folder(Folder), Inserter(Inserter), DefaultFPMathTag(FPMathTag), DefaultOperandBundles(OpBundles) { ClearInsertionPoint(); } /// Insert and return the specified instruction. template InstTy *Insert(InstTy *I, const Twine &Name = "") const { Inserter.InsertHelper(I, Name, BB, InsertPt); AddMetadataToInst(I); return I; } /// No-op overload to handle constants. Constant *Insert(Constant *C, const Twine& = "") const { return C; } Value *Insert(Value *V, const Twine &Name = "") const { if (Instruction *I = dyn_cast(V)) return Insert(I, Name); assert(isa(V)); return V; } //===--------------------------------------------------------------------===// // Builder configuration methods //===--------------------------------------------------------------------===// /// Clear the insertion point: created instructions will not be /// inserted into a block. void ClearInsertionPoint() { BB = nullptr; InsertPt = BasicBlock::iterator(); } BasicBlock *GetInsertBlock() const { return BB; } BasicBlock::iterator GetInsertPoint() const { return InsertPt; } LLVMContext &getContext() const { return Context; } /// This specifies that created instructions should be appended to the /// end of the specified block. void SetInsertPoint(BasicBlock *TheBB) { BB = TheBB; InsertPt = BB->end(); } /// This specifies that created instructions should be inserted before /// the specified instruction. void SetInsertPoint(Instruction *I) { BB = I->getParent(); InsertPt = I->getIterator(); assert(InsertPt != BB->end() && "Can't read debug loc from end()"); SetCurrentDebugLocation(I->getDebugLoc()); } /// This specifies that created instructions should be inserted at the /// specified point. void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) { BB = TheBB; InsertPt = IP; if (IP != TheBB->end()) SetCurrentDebugLocation(IP->getDebugLoc()); } /// This specifies that created instructions should inserted at the beginning /// end of the specified function, but after already existing static alloca /// instructions that are at the start. void SetInsertPointPastAllocas(Function *F) { BB = &F->getEntryBlock(); InsertPt = BB->getFirstNonPHIOrDbgOrAlloca(); } /// Set location information used by debugging information. void SetCurrentDebugLocation(DebugLoc L) { AddOrRemoveMetadataToCopy(LLVMContext::MD_dbg, L.getAsMDNode()); } /// Collect metadata with IDs \p MetadataKinds from \p Src which should be /// added to all created instructions. Entries present in MedataDataToCopy but /// not on \p Src will be dropped from MetadataToCopy. void CollectMetadataToCopy(Instruction *Src, ArrayRef MetadataKinds) { for (unsigned K : MetadataKinds) AddOrRemoveMetadataToCopy(K, Src->getMetadata(K)); } /// Get location information used by debugging information. DebugLoc getCurrentDebugLocation() const; /// If this builder has a current debug location, set it on the /// specified instruction. void SetInstDebugLocation(Instruction *I) const; /// Add all entries in MetadataToCopy to \p I. void AddMetadataToInst(Instruction *I) const { for (const auto &KV : MetadataToCopy) I->setMetadata(KV.first, KV.second); } /// Get the return type of the current function that we're emitting /// into. Type *getCurrentFunctionReturnType() const; /// InsertPoint - A saved insertion point. class InsertPoint { BasicBlock *Block = nullptr; BasicBlock::iterator Point; public: /// Creates a new insertion point which doesn't point to anything. InsertPoint() = default; /// Creates a new insertion point at the given location. InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint) : Block(InsertBlock), Point(InsertPoint) {} /// Returns true if this insert point is set. bool isSet() const { return (Block != nullptr); } BasicBlock *getBlock() const { return Block; } BasicBlock::iterator getPoint() const { return Point; } }; /// Returns the current insert point. InsertPoint saveIP() const { return InsertPoint(GetInsertBlock(), GetInsertPoint()); } /// Returns the current insert point, clearing it in the process. InsertPoint saveAndClearIP() { InsertPoint IP(GetInsertBlock(), GetInsertPoint()); ClearInsertionPoint(); return IP; } /// Sets the current insert point to a previously-saved location. void restoreIP(InsertPoint IP) { if (IP.isSet()) SetInsertPoint(IP.getBlock(), IP.getPoint()); else ClearInsertionPoint(); } /// Get the floating point math metadata being used. MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; } /// Get the flags to be applied to created floating point ops FastMathFlags getFastMathFlags() const { return FMF; } FastMathFlags &getFastMathFlags() { return FMF; } /// Clear the fast-math flags. void clearFastMathFlags() { FMF.clear(); } /// Set the floating point math metadata to be used. void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; } /// Set the fast-math flags to be used with generated fp-math operators void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; } /// Enable/Disable use of constrained floating point math. When /// enabled the CreateF() calls instead create constrained /// floating point intrinsic calls. Fast math flags are unaffected /// by this setting. void setIsFPConstrained(bool IsCon) { IsFPConstrained = IsCon; } /// Query for the use of constrained floating point math bool getIsFPConstrained() { return IsFPConstrained; } /// Set the exception handling to be used with constrained floating point void setDefaultConstrainedExcept(fp::ExceptionBehavior NewExcept) { #ifndef NDEBUG std::optional ExceptStr = convertExceptionBehaviorToStr(NewExcept); assert(ExceptStr && "Garbage strict exception behavior!"); #endif DefaultConstrainedExcept = NewExcept; } /// Set the rounding mode handling to be used with constrained floating point void setDefaultConstrainedRounding(RoundingMode NewRounding) { #ifndef NDEBUG std::optional RoundingStr = convertRoundingModeToStr(NewRounding); assert(RoundingStr && "Garbage strict rounding mode!"); #endif DefaultConstrainedRounding = NewRounding; } /// Get the exception handling used with constrained floating point fp::ExceptionBehavior getDefaultConstrainedExcept() { return DefaultConstrainedExcept; } /// Get the rounding mode handling used with constrained floating point RoundingMode getDefaultConstrainedRounding() { return DefaultConstrainedRounding; } void setConstrainedFPFunctionAttr() { assert(BB && "Must have a basic block to set any function attributes!"); Function *F = BB->getParent(); if (!F->hasFnAttribute(Attribute::StrictFP)) { F->addFnAttr(Attribute::StrictFP); } } void setConstrainedFPCallAttr(CallBase *I) { I->addFnAttr(Attribute::StrictFP); } void setDefaultOperandBundles(ArrayRef OpBundles) { DefaultOperandBundles = OpBundles; } //===--------------------------------------------------------------------===// // RAII helpers. //===--------------------------------------------------------------------===// // RAII object that stores the current insertion point and restores it // when the object is destroyed. This includes the debug location. class InsertPointGuard { IRBuilderBase &Builder; AssertingVH Block; BasicBlock::iterator Point; DebugLoc DbgLoc; public: InsertPointGuard(IRBuilderBase &B) : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()), DbgLoc(B.getCurrentDebugLocation()) {} InsertPointGuard(const InsertPointGuard &) = delete; InsertPointGuard &operator=(const InsertPointGuard &) = delete; ~InsertPointGuard() { Builder.restoreIP(InsertPoint(Block, Point)); Builder.SetCurrentDebugLocation(DbgLoc); } }; // RAII object that stores the current fast math settings and restores // them when the object is destroyed. class FastMathFlagGuard { IRBuilderBase &Builder; FastMathFlags FMF; MDNode *FPMathTag; bool IsFPConstrained; fp::ExceptionBehavior DefaultConstrainedExcept; RoundingMode DefaultConstrainedRounding; public: FastMathFlagGuard(IRBuilderBase &B) : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag), IsFPConstrained(B.IsFPConstrained), DefaultConstrainedExcept(B.DefaultConstrainedExcept), DefaultConstrainedRounding(B.DefaultConstrainedRounding) {} FastMathFlagGuard(const FastMathFlagGuard &) = delete; FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete; ~FastMathFlagGuard() { Builder.FMF = FMF; Builder.DefaultFPMathTag = FPMathTag; Builder.IsFPConstrained = IsFPConstrained; Builder.DefaultConstrainedExcept = DefaultConstrainedExcept; Builder.DefaultConstrainedRounding = DefaultConstrainedRounding; } }; // RAII object that stores the current default operand bundles and restores // them when the object is destroyed. class OperandBundlesGuard { IRBuilderBase &Builder; ArrayRef DefaultOperandBundles; public: OperandBundlesGuard(IRBuilderBase &B) : Builder(B), DefaultOperandBundles(B.DefaultOperandBundles) {} OperandBundlesGuard(const OperandBundlesGuard &) = delete; OperandBundlesGuard &operator=(const OperandBundlesGuard &) = delete; ~OperandBundlesGuard() { Builder.DefaultOperandBundles = DefaultOperandBundles; } }; //===--------------------------------------------------------------------===// // Miscellaneous creation methods. //===--------------------------------------------------------------------===// /// Make a new global variable with initializer type i8* /// /// Make a new global variable with an initializer that has array of i8 type /// filled in with the null terminated string value specified. The new global /// variable will be marked mergable with any others of the same contents. If /// Name is specified, it is the name of the global variable created. /// /// If no module is given via \p M, it is take from the insertion point basic /// block. GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "", unsigned AddressSpace = 0, Module *M = nullptr); /// Get a constant value representing either true or false. ConstantInt *getInt1(bool V) { return ConstantInt::get(getInt1Ty(), V); } /// Get the constant value for i1 true. ConstantInt *getTrue() { return ConstantInt::getTrue(Context); } /// Get the constant value for i1 false. ConstantInt *getFalse() { return ConstantInt::getFalse(Context); } /// Get a constant 8-bit value. ConstantInt *getInt8(uint8_t C) { return ConstantInt::get(getInt8Ty(), C); } /// Get a constant 16-bit value. ConstantInt *getInt16(uint16_t C) { return ConstantInt::get(getInt16Ty(), C); } /// Get a constant 32-bit value. ConstantInt *getInt32(uint32_t C) { return ConstantInt::get(getInt32Ty(), C); } /// Get a constant 64-bit value. ConstantInt *getInt64(uint64_t C) { return ConstantInt::get(getInt64Ty(), C); } /// Get a constant N-bit value, zero extended or truncated from /// a 64-bit value. ConstantInt *getIntN(unsigned N, uint64_t C) { return ConstantInt::get(getIntNTy(N), C); } /// Get a constant integer value. ConstantInt *getInt(const APInt &AI) { return ConstantInt::get(Context, AI); } //===--------------------------------------------------------------------===// // Type creation methods //===--------------------------------------------------------------------===// /// Fetch the type representing a single bit IntegerType *getInt1Ty() { return Type::getInt1Ty(Context); } /// Fetch the type representing an 8-bit integer. IntegerType *getInt8Ty() { return Type::getInt8Ty(Context); } /// Fetch the type representing a 16-bit integer. IntegerType *getInt16Ty() { return Type::getInt16Ty(Context); } /// Fetch the type representing a 32-bit integer. IntegerType *getInt32Ty() { return Type::getInt32Ty(Context); } /// Fetch the type representing a 64-bit integer. IntegerType *getInt64Ty() { return Type::getInt64Ty(Context); } /// Fetch the type representing a 128-bit integer. IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); } /// Fetch the type representing an N-bit integer. IntegerType *getIntNTy(unsigned N) { return Type::getIntNTy(Context, N); } /// Fetch the type representing a 16-bit floating point value. Type *getHalfTy() { return Type::getHalfTy(Context); } /// Fetch the type representing a 16-bit brain floating point value. Type *getBFloatTy() { return Type::getBFloatTy(Context); } /// Fetch the type representing a 32-bit floating point value. Type *getFloatTy() { return Type::getFloatTy(Context); } /// Fetch the type representing a 64-bit floating point value. Type *getDoubleTy() { return Type::getDoubleTy(Context); } /// Fetch the type representing void. Type *getVoidTy() { return Type::getVoidTy(Context); } /// Fetch the type representing a pointer. PointerType *getPtrTy(unsigned AddrSpace = 0) { return PointerType::get(Context, AddrSpace); } /// Fetch the type representing a pointer to an 8-bit integer value. PointerType *getInt8PtrTy(unsigned AddrSpace = 0) { return Type::getInt8PtrTy(Context, AddrSpace); } /// Fetch the type of an integer with size at least as big as that of a /// pointer in the given address space. IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) { return DL.getIntPtrType(Context, AddrSpace); } //===--------------------------------------------------------------------===// // Intrinsic creation methods //===--------------------------------------------------------------------===// /// Create and insert a memset to the specified pointer and the /// specified value. /// /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is /// specified, it will be added to the instruction. Likewise with alias.scope /// and noalias tags. CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, MaybeAlign Align, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) { return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile, TBAATag, ScopeTag, NoAliasTag); } CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, MaybeAlign Align, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); CallInst *CreateMemSetInline(Value *Dst, MaybeAlign DstAlign, Value *Val, Value *Size, bool IsVolatile = false, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); /// Create and insert an element unordered-atomic memset of the region of /// memory starting at the given pointer to the given value. /// /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is /// specified, it will be added to the instruction. Likewise with alias.scope /// and noalias tags. CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val, uint64_t Size, Align Alignment, uint32_t ElementSize, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) { return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size), Align(Alignment), ElementSize, TBAATag, ScopeTag, NoAliasTag); } CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val, Value *Size, Align Alignment, uint32_t ElementSize, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); /// Create and insert a memcpy between the specified pointers. /// /// If the pointers aren't i8*, they will be converted. If a TBAA tag is /// specified, it will be added to the instruction. Likewise with alias.scope /// and noalias tags. CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, uint64_t Size, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) { return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size), isVolatile, TBAATag, TBAAStructTag, ScopeTag, NoAliasTag); } CallInst *CreateMemTransferInst( Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, Value *Size, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, Value *Size, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) { return CreateMemTransferInst(Intrinsic::memcpy, Dst, DstAlign, Src, SrcAlign, Size, isVolatile, TBAATag, TBAAStructTag, ScopeTag, NoAliasTag); } CallInst * CreateMemCpyInline(Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, Value *Size, bool IsVolatile = false, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); /// Create and insert an element unordered-atomic memcpy between the /// specified pointers. /// /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively. /// /// If the pointers aren't i8*, they will be converted. If a TBAA tag is /// specified, it will be added to the instruction. Likewise with alias.scope /// and noalias tags. CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size, uint32_t ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, uint64_t Size, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) { return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size), isVolatile, TBAATag, ScopeTag, NoAliasTag); } CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, Value *Size, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); /// \brief Create and insert an element unordered-atomic memmove between the /// specified pointers. /// /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, /// respectively. /// /// If the pointers aren't i8*, they will be converted. If a TBAA tag is /// specified, it will be added to the instruction. Likewise with alias.scope /// and noalias tags. CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size, uint32_t ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); private: CallInst *getReductionIntrinsic(Intrinsic::ID ID, Value *Src); public: /// Create a sequential vector fadd reduction intrinsic of the source vector. /// The first parameter is a scalar accumulator value. An unordered reduction /// can be created by adding the reassoc fast-math flag to the resulting /// sequential reduction. CallInst *CreateFAddReduce(Value *Acc, Value *Src); /// Create a sequential vector fmul reduction intrinsic of the source vector. /// The first parameter is a scalar accumulator value. An unordered reduction /// can be created by adding the reassoc fast-math flag to the resulting /// sequential reduction. CallInst *CreateFMulReduce(Value *Acc, Value *Src); /// Create a vector int add reduction intrinsic of the source vector. CallInst *CreateAddReduce(Value *Src); /// Create a vector int mul reduction intrinsic of the source vector. CallInst *CreateMulReduce(Value *Src); /// Create a vector int AND reduction intrinsic of the source vector. CallInst *CreateAndReduce(Value *Src); /// Create a vector int OR reduction intrinsic of the source vector. CallInst *CreateOrReduce(Value *Src); /// Create a vector int XOR reduction intrinsic of the source vector. CallInst *CreateXorReduce(Value *Src); /// Create a vector integer max reduction intrinsic of the source /// vector. CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false); /// Create a vector integer min reduction intrinsic of the source /// vector. CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false); /// Create a vector float max reduction intrinsic of the source /// vector. CallInst *CreateFPMaxReduce(Value *Src); /// Create a vector float min reduction intrinsic of the source /// vector. CallInst *CreateFPMinReduce(Value *Src); /// Create a lifetime.start intrinsic. /// /// If the pointer isn't i8* it will be converted. CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr); /// Create a lifetime.end intrinsic. /// /// If the pointer isn't i8* it will be converted. CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr); /// Create a call to invariant.start intrinsic. /// /// If the pointer isn't i8* it will be converted. CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr); /// Create a call to llvm.threadlocal.address intrinsic. CallInst *CreateThreadLocalAddress(Value *Ptr); /// Create a call to Masked Load intrinsic CallInst *CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, Value *Mask, Value *PassThru = nullptr, const Twine &Name = ""); /// Create a call to Masked Store intrinsic CallInst *CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment, Value *Mask); /// Create a call to Masked Gather intrinsic CallInst *CreateMaskedGather(Type *Ty, Value *Ptrs, Align Alignment, Value *Mask = nullptr, Value *PassThru = nullptr, const Twine &Name = ""); /// Create a call to Masked Scatter intrinsic CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, Align Alignment, Value *Mask = nullptr); /// Create a call to Masked Expand Load intrinsic CallInst *CreateMaskedExpandLoad(Type *Ty, Value *Ptr, Value *Mask = nullptr, Value *PassThru = nullptr, const Twine &Name = ""); /// Create a call to Masked Compress Store intrinsic CallInst *CreateMaskedCompressStore(Value *Val, Value *Ptr, Value *Mask = nullptr); /// Create an assume intrinsic call that allows the optimizer to /// assume that the provided condition will be true. /// /// The optional argument \p OpBundles specifies operand bundles that are /// added to the call instruction. CallInst * CreateAssumption(Value *Cond, ArrayRef OpBundles = std::nullopt); /// Create a llvm.experimental.noalias.scope.decl intrinsic call. Instruction *CreateNoAliasScopeDeclaration(Value *Scope); Instruction *CreateNoAliasScopeDeclaration(MDNode *ScopeTag) { return CreateNoAliasScopeDeclaration( MetadataAsValue::get(Context, ScopeTag)); } /// Create a call to the experimental.gc.statepoint intrinsic to /// start a new statepoint sequence. CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee, ArrayRef CallArgs, std::optional> DeoptArgs, ArrayRef GCArgs, const Twine &Name = ""); /// Create a call to the experimental.gc.statepoint intrinsic to /// start a new statepoint sequence. CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee, uint32_t Flags, ArrayRef CallArgs, std::optional> TransitionArgs, std::optional> DeoptArgs, ArrayRef GCArgs, const Twine &Name = ""); /// Conveninence function for the common case when CallArgs are filled /// in using ArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be /// .get()'ed to get the Value pointer. CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee, ArrayRef CallArgs, std::optional> DeoptArgs, ArrayRef GCArgs, const Twine &Name = ""); /// Create an invoke to the experimental.gc.statepoint intrinsic to /// start a new statepoint sequence. InvokeInst * CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef InvokeArgs, std::optional> DeoptArgs, ArrayRef GCArgs, const Twine &Name = ""); /// Create an invoke to the experimental.gc.statepoint intrinsic to /// start a new statepoint sequence. InvokeInst *CreateGCStatepointInvoke( uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags, ArrayRef InvokeArgs, std::optional> TransitionArgs, std::optional> DeoptArgs, ArrayRef GCArgs, const Twine &Name = ""); // Convenience function for the common case when CallArgs are filled in using // ArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to // get the Value *. InvokeInst * CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef InvokeArgs, std::optional> DeoptArgs, ArrayRef GCArgs, const Twine &Name = ""); /// Create a call to the experimental.gc.result intrinsic to extract /// the result from a call wrapped in a statepoint. CallInst *CreateGCResult(Instruction *Statepoint, Type *ResultType, const Twine &Name = ""); /// Create a call to the experimental.gc.relocate intrinsics to /// project the relocated value of one pointer from the statepoint. CallInst *CreateGCRelocate(Instruction *Statepoint, int BaseOffset, int DerivedOffset, Type *ResultType, const Twine &Name = ""); /// Create a call to the experimental.gc.pointer.base intrinsic to get the /// base pointer for the specified derived pointer. CallInst *CreateGCGetPointerBase(Value *DerivedPtr, const Twine &Name = ""); /// Create a call to the experimental.gc.get.pointer.offset intrinsic to get /// the offset of the specified derived pointer from its base. CallInst *CreateGCGetPointerOffset(Value *DerivedPtr, const Twine &Name = ""); /// Create a call to llvm.vscale, multiplied by \p Scaling. The type of VScale /// will be the same type as that of \p Scaling. Value *CreateVScale(Constant *Scaling, const Twine &Name = ""); /// Creates a vector of type \p DstType with the linear sequence <0, 1, ...> Value *CreateStepVector(Type *DstType, const Twine &Name = ""); /// Create a call to intrinsic \p ID with 1 operand which is mangled on its /// type. CallInst *CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, Instruction *FMFSource = nullptr, const Twine &Name = ""); /// Create a call to intrinsic \p ID with 2 operands which is mangled on the /// first type. CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, Instruction *FMFSource = nullptr, const Twine &Name = ""); /// Create a call to intrinsic \p ID with \p Args, mangled using \p Types. If /// \p FMFSource is provided, copy fast-math-flags from that instruction to /// the intrinsic. CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef Types, ArrayRef Args, Instruction *FMFSource = nullptr, const Twine &Name = ""); /// Create a call to intrinsic \p ID with \p RetTy and \p Args. If /// \p FMFSource is provided, copy fast-math-flags from that instruction to /// the intrinsic. CallInst *CreateIntrinsic(Type *RetTy, Intrinsic::ID ID, ArrayRef Args, Instruction *FMFSource = nullptr, const Twine &Name = ""); /// Create call to the minnum intrinsic. CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, nullptr, Name); } /// Create call to the maxnum intrinsic. CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, nullptr, Name); } /// Create call to the minimum intrinsic. CallInst *CreateMinimum(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS, nullptr, Name); } /// Create call to the maximum intrinsic. CallInst *CreateMaximum(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS, nullptr, Name); } /// Create call to the copysign intrinsic. CallInst *CreateCopySign(Value *LHS, Value *RHS, Instruction *FMFSource = nullptr, const Twine &Name = "") { return CreateBinaryIntrinsic(Intrinsic::copysign, LHS, RHS, FMFSource, Name); } /// Create a call to the arithmetic_fence intrinsic. CallInst *CreateArithmeticFence(Value *Val, Type *DstType, const Twine &Name = "") { return CreateIntrinsic(Intrinsic::arithmetic_fence, DstType, Val, nullptr, Name); } /// Create a call to the vector.extract intrinsic. CallInst *CreateExtractVector(Type *DstType, Value *SrcVec, Value *Idx, const Twine &Name = "") { return CreateIntrinsic(Intrinsic::vector_extract, {DstType, SrcVec->getType()}, {SrcVec, Idx}, nullptr, Name); } /// Create a call to the vector.insert intrinsic. CallInst *CreateInsertVector(Type *DstType, Value *SrcVec, Value *SubVec, Value *Idx, const Twine &Name = "") { return CreateIntrinsic(Intrinsic::vector_insert, {DstType, SubVec->getType()}, {SrcVec, SubVec, Idx}, nullptr, Name); } private: /// Create a call to a masked intrinsic with given Id. CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef Ops, ArrayRef OverloadedTypes, const Twine &Name = ""); Value *getCastedInt8PtrValue(Value *Ptr); //===--------------------------------------------------------------------===// // Instruction creation methods: Terminators //===--------------------------------------------------------------------===// private: /// Helper to add branch weight and unpredictable metadata onto an /// instruction. /// \returns The annotated instruction. template InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) { if (Weights) I->setMetadata(LLVMContext::MD_prof, Weights); if (Unpredictable) I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable); return I; } public: /// Create a 'ret void' instruction. ReturnInst *CreateRetVoid() { return Insert(ReturnInst::Create(Context)); } /// Create a 'ret ' instruction. ReturnInst *CreateRet(Value *V) { return Insert(ReturnInst::Create(Context, V)); } /// Create a sequence of N insertvalue instructions, /// with one Value from the retVals array each, that build a aggregate /// return value one value at a time, and a ret instruction to return /// the resulting aggregate value. /// /// This is a convenience function for code that uses aggregate return values /// as a vehicle for having multiple return values. ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) { Value *V = PoisonValue::get(getCurrentFunctionReturnType()); for (unsigned i = 0; i != N; ++i) V = CreateInsertValue(V, retVals[i], i, "mrv"); return Insert(ReturnInst::Create(Context, V)); } /// Create an unconditional 'br label X' instruction. BranchInst *CreateBr(BasicBlock *Dest) { return Insert(BranchInst::Create(Dest)); } /// Create a conditional 'br Cond, TrueDest, FalseDest' /// instruction. BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights = nullptr, MDNode *Unpredictable = nullptr) { return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond), BranchWeights, Unpredictable)); } /// Create a conditional 'br Cond, TrueDest, FalseDest' /// instruction. Copy branch meta data if available. BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, Instruction *MDSrc) { BranchInst *Br = BranchInst::Create(True, False, Cond); if (MDSrc) { unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable, LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; Br->copyMetadata(*MDSrc, WL); } return Insert(Br); } /// Create a switch instruction with the specified value, default dest, /// and with a hint for the number of cases that will be added (for efficient /// allocation). SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10, MDNode *BranchWeights = nullptr, MDNode *Unpredictable = nullptr) { return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases), BranchWeights, Unpredictable)); } /// Create an indirect branch instruction with the specified address /// operand, with an optional hint for the number of destinations that will be /// added (for efficient allocation). IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) { return Insert(IndirectBrInst::Create(Addr, NumDests)); } /// Create an invoke instruction. InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef Args, ArrayRef OpBundles, const Twine &Name = "") { InvokeInst *II = InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args, OpBundles); if (IsFPConstrained) setConstrainedFPCallAttr(II); return Insert(II, Name); } InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef Args = std::nullopt, const Twine &Name = "") { InvokeInst *II = InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args); if (IsFPConstrained) setConstrainedFPCallAttr(II); return Insert(II, Name); } InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef Args, ArrayRef OpBundles, const Twine &Name = "") { return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(), NormalDest, UnwindDest, Args, OpBundles, Name); } InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef Args = std::nullopt, const Twine &Name = "") { return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(), NormalDest, UnwindDest, Args, Name); } /// \brief Create a callbr instruction. CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args = std::nullopt, const Twine &Name = "") { return Insert(CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args), Name); } CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, ArrayRef OpBundles, const Twine &Name = "") { return Insert( CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, OpBundles), Name); } CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args = std::nullopt, const Twine &Name = "") { return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(), DefaultDest, IndirectDests, Args, Name); } CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, ArrayRef OpBundles, const Twine &Name = "") { return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(), DefaultDest, IndirectDests, Args, Name); } ResumeInst *CreateResume(Value *Exn) { return Insert(ResumeInst::Create(Exn)); } CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad, BasicBlock *UnwindBB = nullptr) { return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB)); } CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB, unsigned NumHandlers, const Twine &Name = "") { return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers), Name); } CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef Args, const Twine &Name = "") { return Insert(CatchPadInst::Create(ParentPad, Args), Name); } CleanupPadInst *CreateCleanupPad(Value *ParentPad, ArrayRef Args = std::nullopt, const Twine &Name = "") { return Insert(CleanupPadInst::Create(ParentPad, Args), Name); } CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) { return Insert(CatchReturnInst::Create(CatchPad, BB)); } UnreachableInst *CreateUnreachable() { return Insert(new UnreachableInst(Context)); } //===--------------------------------------------------------------------===// // Instruction creation methods: Binary Operators //===--------------------------------------------------------------------===// private: BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name, bool HasNUW, bool HasNSW) { BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name); if (HasNUW) BO->setHasNoUnsignedWrap(); if (HasNSW) BO->setHasNoSignedWrap(); return BO; } Instruction *setFPAttrs(Instruction *I, MDNode *FPMD, FastMathFlags FMF) const { if (!FPMD) FPMD = DefaultFPMathTag; if (FPMD) I->setMetadata(LLVMContext::MD_fpmath, FPMD); I->setFastMathFlags(FMF); return I; } Value *getConstrainedFPRounding(std::optional Rounding) { RoundingMode UseRounding = DefaultConstrainedRounding; if (Rounding) UseRounding = *Rounding; std::optional RoundingStr = convertRoundingModeToStr(UseRounding); assert(RoundingStr && "Garbage strict rounding mode!"); auto *RoundingMDS = MDString::get(Context, *RoundingStr); return MetadataAsValue::get(Context, RoundingMDS); } Value *getConstrainedFPExcept(std::optional Except) { std::optional ExceptStr = convertExceptionBehaviorToStr( Except.value_or(DefaultConstrainedExcept)); assert(ExceptStr && "Garbage strict exception behavior!"); auto *ExceptMDS = MDString::get(Context, *ExceptStr); return MetadataAsValue::get(Context, ExceptMDS); } Value *getConstrainedFPPredicate(CmpInst::Predicate Predicate) { assert(CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && "Invalid constrained FP comparison predicate!"); StringRef PredicateStr = CmpInst::getPredicateName(Predicate); auto *PredicateMDS = MDString::get(Context, PredicateStr); return MetadataAsValue::get(Context, PredicateMDS); } public: Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (Value *V = Folder.FoldNoWrapBinOp(Instruction::Add, LHS, RHS, HasNUW, HasNSW)) return V; return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateAdd(LHS, RHS, Name, false, true); } Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateAdd(LHS, RHS, Name, true, false); } Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (Value *V = Folder.FoldNoWrapBinOp(Instruction::Sub, LHS, RHS, HasNUW, HasNSW)) return V; return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateSub(LHS, RHS, Name, false, true); } Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateSub(LHS, RHS, Name, true, false); } Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (Value *V = Folder.FoldNoWrapBinOp(Instruction::Mul, LHS, RHS, HasNUW, HasNSW)) return V; return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateMul(LHS, RHS, Name, false, true); } Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateMul(LHS, RHS, Name, true, false); } Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (Value *V = Folder.FoldExactBinOp(Instruction::UDiv, LHS, RHS, isExact)) return V; if (!isExact) return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name); } Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateUDiv(LHS, RHS, Name, true); } Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (Value *V = Folder.FoldExactBinOp(Instruction::SDiv, LHS, RHS, isExact)) return V; if (!isExact) return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name); } Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateSDiv(LHS, RHS, Name, true); } Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") { if (Value *V = Folder.FoldBinOp(Instruction::URem, LHS, RHS)) return V; return Insert(BinaryOperator::CreateURem(LHS, RHS), Name); } Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") { if (Value *V = Folder.FoldBinOp(Instruction::SRem, LHS, RHS)) return V; return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name); } Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (Value *V = Folder.FoldNoWrapBinOp(Instruction::Shl, LHS, RHS, HasNUW, HasNSW)) return V; return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name, HasNUW, HasNSW); } Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name, HasNUW, HasNSW); } Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (Value *V = Folder.FoldExactBinOp(Instruction::LShr, LHS, RHS, isExact)) return V; if (!isExact) return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name); } Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "", bool isExact = false) { return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); } Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "", bool isExact = false) { return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); } Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (Value *V = Folder.FoldExactBinOp(Instruction::AShr, LHS, RHS, isExact)) return V; if (!isExact) return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name); } Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "", bool isExact = false) { return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); } Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "", bool isExact = false) { return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); } Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") { if (auto *V = Folder.FoldBinOp(Instruction::And, LHS, RHS)) return V; return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name); } Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") { return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") { return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateAnd(ArrayRef Ops) { assert(!Ops.empty()); Value *Accum = Ops[0]; for (unsigned i = 1; i < Ops.size(); i++) Accum = CreateAnd(Accum, Ops[i]); return Accum; } Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") { if (auto *V = Folder.FoldBinOp(Instruction::Or, LHS, RHS)) return V; return Insert(BinaryOperator::CreateOr(LHS, RHS), Name); } Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") { return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") { return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateOr(ArrayRef Ops) { assert(!Ops.empty()); Value *Accum = Ops[0]; for (unsigned i = 1; i < Ops.size(); i++) Accum = CreateOr(Accum, Ops[i]); return Accum; } Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") { if (Value *V = Folder.FoldBinOp(Instruction::Xor, LHS, RHS)) return V; return Insert(BinaryOperator::CreateXor(LHS, RHS), Name); } Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") { return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") { return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "", MDNode *FPMD = nullptr) { if (IsFPConstrained) return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd, L, R, nullptr, Name, FPMD); if (Value *V = Folder.FoldBinOpFMF(Instruction::FAdd, L, R, FMF)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF); return Insert(I, Name); } /// Copy fast-math-flags from an instruction rather than using the builder's /// default FMF. Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name = "") { if (IsFPConstrained) return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd, L, R, FMFSource, Name); FastMathFlags FMF = FMFSource->getFastMathFlags(); if (Value *V = Folder.FoldBinOpFMF(Instruction::FAdd, L, R, FMF)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr, FMF); return Insert(I, Name); } Value *CreateFSub(Value *L, Value *R, const Twine &Name = "", MDNode *FPMD = nullptr) { if (IsFPConstrained) return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub, L, R, nullptr, Name, FPMD); if (Value *V = Folder.FoldBinOpFMF(Instruction::FSub, L, R, FMF)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF); return Insert(I, Name); } /// Copy fast-math-flags from an instruction rather than using the builder's /// default FMF. Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name = "") { if (IsFPConstrained) return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub, L, R, FMFSource, Name); FastMathFlags FMF = FMFSource->getFastMathFlags(); if (Value *V = Folder.FoldBinOpFMF(Instruction::FSub, L, R, FMF)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr, FMF); return Insert(I, Name); } Value *CreateFMul(Value *L, Value *R, const Twine &Name = "", MDNode *FPMD = nullptr) { if (IsFPConstrained) return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul, L, R, nullptr, Name, FPMD); if (Value *V = Folder.FoldBinOpFMF(Instruction::FMul, L, R, FMF)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF); return Insert(I, Name); } /// Copy fast-math-flags from an instruction rather than using the builder's /// default FMF. Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name = "") { if (IsFPConstrained) return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul, L, R, FMFSource, Name); FastMathFlags FMF = FMFSource->getFastMathFlags(); if (Value *V = Folder.FoldBinOpFMF(Instruction::FMul, L, R, FMF)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr, FMF); return Insert(I, Name); } Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "", MDNode *FPMD = nullptr) { if (IsFPConstrained) return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv, L, R, nullptr, Name, FPMD); if (Value *V = Folder.FoldBinOpFMF(Instruction::FDiv, L, R, FMF)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF); return Insert(I, Name); } /// Copy fast-math-flags from an instruction rather than using the builder's /// default FMF. Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name = "") { if (IsFPConstrained) return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv, L, R, FMFSource, Name); FastMathFlags FMF = FMFSource->getFastMathFlags(); if (Value *V = Folder.FoldBinOpFMF(Instruction::FDiv, L, R, FMF)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr, FMF); return Insert(I, Name); } Value *CreateFRem(Value *L, Value *R, const Twine &Name = "", MDNode *FPMD = nullptr) { if (IsFPConstrained) return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem, L, R, nullptr, Name, FPMD); if (Value *V = Folder.FoldBinOpFMF(Instruction::FRem, L, R, FMF)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF); return Insert(I, Name); } /// Copy fast-math-flags from an instruction rather than using the builder's /// default FMF. Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name = "") { if (IsFPConstrained) return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem, L, R, FMFSource, Name); FastMathFlags FMF = FMFSource->getFastMathFlags(); if (Value *V = Folder.FoldBinOpFMF(Instruction::FRem, L, R, FMF)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr, FMF); return Insert(I, Name); } Value *CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { if (Value *V = Folder.FoldBinOp(Opc, LHS, RHS)) return V; Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS); if (isa(BinOp)) setFPAttrs(BinOp, FPMathTag, FMF); return Insert(BinOp, Name); } Value *CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name = "") { assert(Cond2->getType()->isIntOrIntVectorTy(1)); return CreateSelect(Cond1, Cond2, ConstantInt::getNullValue(Cond2->getType()), Name); } Value *CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name = "") { assert(Cond2->getType()->isIntOrIntVectorTy(1)); return CreateSelect(Cond1, ConstantInt::getAllOnesValue(Cond2->getType()), Cond2, Name); } Value *CreateLogicalOp(Instruction::BinaryOps Opc, Value *Cond1, Value *Cond2, const Twine &Name = "") { switch (Opc) { case Instruction::And: return CreateLogicalAnd(Cond1, Cond2, Name); case Instruction::Or: return CreateLogicalOr(Cond1, Cond2, Name); default: break; } llvm_unreachable("Not a logical operation."); } // NOTE: this is sequential, non-commutative, ordered reduction! Value *CreateLogicalOr(ArrayRef Ops) { assert(!Ops.empty()); Value *Accum = Ops[0]; for (unsigned i = 1; i < Ops.size(); i++) Accum = CreateLogicalOr(Accum, Ops[i]); return Accum; } CallInst *CreateConstrainedFPBinOp( Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource = nullptr, const Twine &Name = "", MDNode *FPMathTag = nullptr, std::optional Rounding = std::nullopt, std::optional Except = std::nullopt); Value *CreateNeg(Value *V, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { return CreateSub(Constant::getNullValue(V->getType()), V, Name, HasNUW, HasNSW); } Value *CreateNSWNeg(Value *V, const Twine &Name = "") { return CreateNeg(V, Name, false, true); } Value *CreateNUWNeg(Value *V, const Twine &Name = "") { return CreateNeg(V, Name, true, false); } Value *CreateFNeg(Value *V, const Twine &Name = "", MDNode *FPMathTag = nullptr) { if (Value *Res = Folder.FoldUnOpFMF(Instruction::FNeg, V, FMF)) return Res; return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), FPMathTag, FMF), Name); } /// Copy fast-math-flags from an instruction rather than using the builder's /// default FMF. Value *CreateFNegFMF(Value *V, Instruction *FMFSource, const Twine &Name = "") { FastMathFlags FMF = FMFSource->getFastMathFlags(); if (Value *Res = Folder.FoldUnOpFMF(Instruction::FNeg, V, FMF)) return Res; return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), nullptr, FMF), Name); } Value *CreateNot(Value *V, const Twine &Name = "") { return CreateXor(V, Constant::getAllOnesValue(V->getType()), Name); } Value *CreateUnOp(Instruction::UnaryOps Opc, Value *V, const Twine &Name = "", MDNode *FPMathTag = nullptr) { if (Value *Res = Folder.FoldUnOpFMF(Opc, V, FMF)) return Res; Instruction *UnOp = UnaryOperator::Create(Opc, V); if (isa(UnOp)) setFPAttrs(UnOp, FPMathTag, FMF); return Insert(UnOp, Name); } /// Create either a UnaryOperator or BinaryOperator depending on \p Opc. /// Correct number of operands must be passed accordingly. Value *CreateNAryOp(unsigned Opc, ArrayRef Ops, const Twine &Name = "", MDNode *FPMathTag = nullptr); //===--------------------------------------------------------------------===// // Instruction creation methods: Memory Instructions //===--------------------------------------------------------------------===// AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace, Value *ArraySize = nullptr, const Twine &Name = "") { const DataLayout &DL = BB->getModule()->getDataLayout(); Align AllocaAlign = DL.getPrefTypeAlign(Ty); return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name); } AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr, const Twine &Name = "") { const DataLayout &DL = BB->getModule()->getDataLayout(); Align AllocaAlign = DL.getPrefTypeAlign(Ty); unsigned AddrSpace = DL.getAllocaAddrSpace(); return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name); } /// Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of /// converting the string to 'bool' for the isVolatile parameter. LoadInst *CreateLoad(Type *Ty, Value *Ptr, const char *Name) { return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name); } LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") { return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name); } LoadInst *CreateLoad(Type *Ty, Value *Ptr, bool isVolatile, const Twine &Name = "") { return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), isVolatile, Name); } StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) { return CreateAlignedStore(Val, Ptr, MaybeAlign(), isVolatile); } LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name) { return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name); } LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const Twine &Name = "") { return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name); } LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name = "") { if (!Align) { const DataLayout &DL = BB->getModule()->getDataLayout(); Align = DL.getABITypeAlign(Ty); } return Insert(new LoadInst(Ty, Ptr, Twine(), isVolatile, *Align), Name); } StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align, bool isVolatile = false) { if (!Align) { const DataLayout &DL = BB->getModule()->getDataLayout(); Align = DL.getABITypeAlign(Val->getType()); } return Insert(new StoreInst(Val, Ptr, isVolatile, *Align)); } FenceInst *CreateFence(AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System, const Twine &Name = "") { return Insert(new FenceInst(Context, Ordering, SSID), Name); } AtomicCmpXchgInst * CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New, MaybeAlign Align, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID = SyncScope::System) { if (!Align) { const DataLayout &DL = BB->getModule()->getDataLayout(); Align = llvm::Align(DL.getTypeStoreSize(New->getType())); } return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, *Align, SuccessOrdering, FailureOrdering, SSID)); } AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val, MaybeAlign Align, AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System) { if (!Align) { const DataLayout &DL = BB->getModule()->getDataLayout(); Align = llvm::Align(DL.getTypeStoreSize(Val->getType())); } return Insert(new AtomicRMWInst(Op, Ptr, Val, *Align, Ordering, SSID)); } Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef IdxList, const Twine &Name = "", bool IsInBounds = false) { if (auto *V = Folder.FoldGEP(Ty, Ptr, IdxList, IsInBounds)) return V; return Insert(IsInBounds ? GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList) : GetElementPtrInst::Create(Ty, Ptr, IdxList), Name); } Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef IdxList, const Twine &Name = "") { return CreateGEP(Ty, Ptr, IdxList, Name, /* IsInBounds */ true); } Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0); if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/false)) return V; return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name); } Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0); if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/true)) return V; return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name); } Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt32Ty(Context), Idx0), ConstantInt::get(Type::getInt32Ty(Context), Idx1) }; if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/false)) return V; return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name); } Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt32Ty(Context), Idx0), ConstantInt::get(Type::getInt32Ty(Context), Idx1) }; if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/true)) return V; return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name); } Value *CreateConstGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0); if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/false)) return V; return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name); } Value *CreateConstInBoundsGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0); if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/true)) return V; return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name); } Value *CreateConstGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, uint64_t Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt64Ty(Context), Idx0), ConstantInt::get(Type::getInt64Ty(Context), Idx1) }; if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/false)) return V; return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name); } Value *CreateConstInBoundsGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, uint64_t Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt64Ty(Context), Idx0), ConstantInt::get(Type::getInt64Ty(Context), Idx1) }; if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/true)) return V; return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name); } Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx, const Twine &Name = "") { return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name); } /// Same as CreateGlobalString, but return a pointer with "i8*" type /// instead of a pointer to array of i8. /// /// If no module is given via \p M, it is take from the insertion point basic /// block. Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "", unsigned AddressSpace = 0, Module *M = nullptr) { GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace, M); Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0); Constant *Indices[] = {Zero, Zero}; return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV, Indices); } //===--------------------------------------------------------------------===// // Instruction creation methods: Cast/Conversion Operators //===--------------------------------------------------------------------===// Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::Trunc, V, DestTy, Name); } Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::ZExt, V, DestTy, Name); } Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::SExt, V, DestTy, Name); } /// Create a ZExt or Trunc from the integer value V to DestTy. Return /// the value untouched if the type of V is already DestTy. Value *CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name = "") { assert(V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"); Type *VTy = V->getType(); if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits()) return CreateZExt(V, DestTy, Name); if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) return CreateTrunc(V, DestTy, Name); return V; } /// Create a SExt or Trunc from the integer value V to DestTy. Return /// the value untouched if the type of V is already DestTy. Value *CreateSExtOrTrunc(Value *V, Type *DestTy, const Twine &Name = "") { assert(V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"); Type *VTy = V->getType(); if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits()) return CreateSExt(V, DestTy, Name); if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) return CreateTrunc(V, DestTy, Name); return V; } Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = "") { if (IsFPConstrained) return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptoui, V, DestTy, nullptr, Name); return CreateCast(Instruction::FPToUI, V, DestTy, Name); } Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = "") { if (IsFPConstrained) return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptosi, V, DestTy, nullptr, Name); return CreateCast(Instruction::FPToSI, V, DestTy, Name); } Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){ if (IsFPConstrained) return CreateConstrainedFPCast(Intrinsic::experimental_constrained_uitofp, V, DestTy, nullptr, Name); return CreateCast(Instruction::UIToFP, V, DestTy, Name); } Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){ if (IsFPConstrained) return CreateConstrainedFPCast(Intrinsic::experimental_constrained_sitofp, V, DestTy, nullptr, Name); return CreateCast(Instruction::SIToFP, V, DestTy, Name); } Value *CreateFPTrunc(Value *V, Type *DestTy, const Twine &Name = "") { if (IsFPConstrained) return CreateConstrainedFPCast( Intrinsic::experimental_constrained_fptrunc, V, DestTy, nullptr, Name); return CreateCast(Instruction::FPTrunc, V, DestTy, Name); } Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") { if (IsFPConstrained) return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fpext, V, DestTy, nullptr, Name); return CreateCast(Instruction::FPExt, V, DestTy, Name); } Value *CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::PtrToInt, V, DestTy, Name); } Value *CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::IntToPtr, V, DestTy, Name); } Value *CreateBitCast(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::BitCast, V, DestTy, Name); } Value *CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name); } Value *CreateZExtOrBitCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast(V)) return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name); return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name); } Value *CreateSExtOrBitCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast(V)) return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name); return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name); } Value *CreateTruncOrBitCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast(V)) return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name); return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name); } Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast(V)) return Insert(Folder.CreateCast(Op, VC, DestTy), Name); return Insert(CastInst::Create(Op, V, DestTy), Name); } Value *CreatePointerCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast(V)) return Insert(Folder.CreatePointerCast(VC, DestTy), Name); return Insert(CastInst::CreatePointerCast(V, DestTy), Name); } Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast(V)) { return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy), Name); } return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy), Name); } Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast(V)) return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name); return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name); } Value *CreateBitOrPointerCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy()) return CreatePtrToInt(V, DestTy, Name); if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy()) return CreateIntToPtr(V, DestTy, Name); return CreateBitCast(V, DestTy, Name); } Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast(V)) return Insert(Folder.CreateFPCast(VC, DestTy), Name); return Insert(CastInst::CreateFPCast(V, DestTy), Name); } CallInst *CreateConstrainedFPCast( Intrinsic::ID ID, Value *V, Type *DestTy, Instruction *FMFSource = nullptr, const Twine &Name = "", MDNode *FPMathTag = nullptr, std::optional Rounding = std::nullopt, std::optional Except = std::nullopt); // Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a // compile time error, instead of converting the string to bool for the // isSigned parameter. Value *CreateIntCast(Value *, Type *, const char *) = delete; //===--------------------------------------------------------------------===// // Instruction creation methods: Compare Instructions //===--------------------------------------------------------------------===// Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name); } Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name); } Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name); } Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name); } Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name); } Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name); } Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name); } Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name); } Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name); } Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name); } Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag); } Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name = "") { if (auto *V = Folder.FoldICmp(P, LHS, RHS)) return V; return Insert(new ICmpInst(P, LHS, RHS), Name); } // Create a quiet floating-point comparison (i.e. one that raises an FP // exception only in the case where an input is a signaling NaN). // Note that this differs from CreateFCmpS only if IsFPConstrained is true. Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, false); } Value *CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CmpInst::isFPPredicate(Pred) ? CreateFCmp(Pred, LHS, RHS, Name, FPMathTag) : CreateICmp(Pred, LHS, RHS, Name); } // Create a signaling floating-point comparison (i.e. one that raises an FP // exception whenever an input is any NaN, signaling or quiet). // Note that this differs from CreateFCmp only if IsFPConstrained is true. Value *CreateFCmpS(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, true); } private: // Helper routine to create either a signaling or a quiet FP comparison. Value *CreateFCmpHelper(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name, MDNode *FPMathTag, bool IsSignaling); public: CallInst *CreateConstrainedFPCmp( Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R, const Twine &Name = "", std::optional Except = std::nullopt); //===--------------------------------------------------------------------===// // Instruction creation methods: Other Instructions //===--------------------------------------------------------------------===// PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name = "") { PHINode *Phi = PHINode::Create(Ty, NumReservedValues); if (isa(Phi)) setFPAttrs(Phi, nullptr /* MDNode* */, FMF); return Insert(Phi, Name); } private: CallInst *createCallHelper(Function *Callee, ArrayRef Ops, const Twine &Name = "", Instruction *FMFSource = nullptr, ArrayRef OpBundles = {}); public: CallInst *CreateCall(FunctionType *FTy, Value *Callee, ArrayRef Args = std::nullopt, const Twine &Name = "", MDNode *FPMathTag = nullptr) { CallInst *CI = CallInst::Create(FTy, Callee, Args, DefaultOperandBundles); if (IsFPConstrained) setConstrainedFPCallAttr(CI); if (isa(CI)) setFPAttrs(CI, FPMathTag, FMF); return Insert(CI, Name); } CallInst *CreateCall(FunctionType *FTy, Value *Callee, ArrayRef Args, ArrayRef OpBundles, const Twine &Name = "", MDNode *FPMathTag = nullptr) { CallInst *CI = CallInst::Create(FTy, Callee, Args, OpBundles); if (IsFPConstrained) setConstrainedFPCallAttr(CI); if (isa(CI)) setFPAttrs(CI, FPMathTag, FMF); return Insert(CI, Name); } CallInst *CreateCall(FunctionCallee Callee, ArrayRef Args = std::nullopt, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args, Name, FPMathTag); } CallInst *CreateCall(FunctionCallee Callee, ArrayRef Args, ArrayRef OpBundles, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args, OpBundles, Name, FPMathTag); } CallInst *CreateConstrainedFPCall( Function *Callee, ArrayRef Args, const Twine &Name = "", std::optional Rounding = std::nullopt, std::optional Except = std::nullopt); Value *CreateSelect(Value *C, Value *True, Value *False, const Twine &Name = "", Instruction *MDFrom = nullptr); VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") { return Insert(new VAArgInst(List, Ty), Name); } Value *CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name = "") { if (Value *V = Folder.FoldExtractElement(Vec, Idx)) return V; return Insert(ExtractElementInst::Create(Vec, Idx), Name); } Value *CreateExtractElement(Value *Vec, uint64_t Idx, const Twine &Name = "") { return CreateExtractElement(Vec, getInt64(Idx), Name); } Value *CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name = "") { return CreateInsertElement(PoisonValue::get(VecTy), NewElt, Idx, Name); } Value *CreateInsertElement(Type *VecTy, Value *NewElt, uint64_t Idx, const Twine &Name = "") { return CreateInsertElement(PoisonValue::get(VecTy), NewElt, Idx, Name); } Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx, const Twine &Name = "") { if (Value *V = Folder.FoldInsertElement(Vec, NewElt, Idx)) return V; return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name); } Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx, const Twine &Name = "") { return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name); } Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name = "") { SmallVector IntMask; ShuffleVectorInst::getShuffleMask(cast(Mask), IntMask); return CreateShuffleVector(V1, V2, IntMask, Name); } /// See class ShuffleVectorInst for a description of the mask representation. Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef Mask, const Twine &Name = "") { if (Value *V = Folder.FoldShuffleVector(V1, V2, Mask)) return V; return Insert(new ShuffleVectorInst(V1, V2, Mask), Name); } /// Create a unary shuffle. The second vector operand of the IR instruction /// is poison. Value *CreateShuffleVector(Value *V, ArrayRef Mask, const Twine &Name = "") { return CreateShuffleVector(V, PoisonValue::get(V->getType()), Mask, Name); } Value *CreateExtractValue(Value *Agg, ArrayRef Idxs, const Twine &Name = "") { if (auto *V = Folder.FoldExtractValue(Agg, Idxs)) return V; return Insert(ExtractValueInst::Create(Agg, Idxs), Name); } Value *CreateInsertValue(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &Name = "") { if (auto *V = Folder.FoldInsertValue(Agg, Val, Idxs)) return V; return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name); } LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses, const Twine &Name = "") { return Insert(LandingPadInst::Create(Ty, NumClauses), Name); } Value *CreateFreeze(Value *V, const Twine &Name = "") { return Insert(new FreezeInst(V), Name); } //===--------------------------------------------------------------------===// // Utility creation methods //===--------------------------------------------------------------------===// /// Return a boolean value testing if \p Arg == 0. Value *CreateIsNull(Value *Arg, const Twine &Name = "") { return CreateICmpEQ(Arg, ConstantInt::getNullValue(Arg->getType()), Name); } /// Return a boolean value testing if \p Arg != 0. Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") { return CreateICmpNE(Arg, ConstantInt::getNullValue(Arg->getType()), Name); } /// Return a boolean value testing if \p Arg < 0. Value *CreateIsNeg(Value *Arg, const Twine &Name = "") { return CreateICmpSLT(Arg, ConstantInt::getNullValue(Arg->getType()), Name); } /// Return a boolean value testing if \p Arg > -1. Value *CreateIsNotNeg(Value *Arg, const Twine &Name = "") { return CreateICmpSGT(Arg, ConstantInt::getAllOnesValue(Arg->getType()), Name); } /// Return the i64 difference between two pointer values, dividing out /// the size of the pointed-to objects. /// /// This is intended to implement C-style pointer subtraction. As such, the /// pointers must be appropriately aligned for their element types and /// pointing into the same object. Value *CreatePtrDiff(Type *ElemTy, Value *LHS, Value *RHS, const Twine &Name = ""); /// Create a launder.invariant.group intrinsic call. If Ptr type is /// different from pointer to i8, it's casted to pointer to i8 in the same /// address space before call and casted back to Ptr type after call. Value *CreateLaunderInvariantGroup(Value *Ptr); /// \brief Create a strip.invariant.group intrinsic call. If Ptr type is /// different from pointer to i8, it's casted to pointer to i8 in the same /// address space before call and casted back to Ptr type after call. Value *CreateStripInvariantGroup(Value *Ptr); /// Return a vector value that contains the vector V reversed Value *CreateVectorReverse(Value *V, const Twine &Name = ""); /// Return a vector splice intrinsic if using scalable vectors, otherwise /// return a shufflevector. If the immediate is positive, a vector is /// extracted from concat(V1, V2), starting at Imm. If the immediate /// is negative, we extract -Imm elements from V1 and the remaining /// elements from V2. Imm is a signed integer in the range /// -VL <= Imm < VL (where VL is the runtime vector length of the /// source/result vector) Value *CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name = ""); /// Return a vector value that contains \arg V broadcasted to \p /// NumElts elements. Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = ""); /// Return a vector value that contains \arg V broadcasted to \p /// EC elements. Value *CreateVectorSplat(ElementCount EC, Value *V, const Twine &Name = ""); /// Return a value that has been extracted from a larger integer type. Value *CreateExtractInteger(const DataLayout &DL, Value *From, IntegerType *ExtractedTy, uint64_t Offset, const Twine &Name); Value *CreatePreserveArrayAccessIndex(Type *ElTy, Value *Base, unsigned Dimension, unsigned LastIndex, MDNode *DbgInfo); Value *CreatePreserveUnionAccessIndex(Value *Base, unsigned FieldIndex, MDNode *DbgInfo); Value *CreatePreserveStructAccessIndex(Type *ElTy, Value *Base, unsigned Index, unsigned FieldIndex, MDNode *DbgInfo); private: /// Helper function that creates an assume intrinsic call that /// represents an alignment assumption on the provided pointer \p PtrValue /// with offset \p OffsetValue and alignment value \p AlignValue. CallInst *CreateAlignmentAssumptionHelper(const DataLayout &DL, Value *PtrValue, Value *AlignValue, Value *OffsetValue); public: /// Create an assume intrinsic call that represents an alignment /// assumption on the provided pointer. /// /// An optional offset can be provided, and if it is provided, the offset /// must be subtracted from the provided pointer to get the pointer with the /// specified alignment. CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue, unsigned Alignment, Value *OffsetValue = nullptr); /// Create an assume intrinsic call that represents an alignment /// assumption on the provided pointer. /// /// An optional offset can be provided, and if it is provided, the offset /// must be subtracted from the provided pointer to get the pointer with the /// specified alignment. /// /// This overload handles the condition where the Alignment is dependent /// on an existing value rather than a static value. CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue, Value *Alignment, Value *OffsetValue = nullptr); }; /// This provides a uniform API for creating instructions and inserting /// them into a basic block: either at the end of a BasicBlock, or at a specific /// iterator location in a block. /// /// Note that the builder does not expose the full generality of LLVM /// instructions. For access to extra instruction properties, use the mutators /// (e.g. setVolatile) on the instructions after they have been /// created. Convenience state exists to specify fast-math flags and fp-math /// tags. /// /// The first template argument specifies a class to use for creating constants. /// This defaults to creating minimally folded constants. The second template /// argument allows clients to specify custom insertion hooks that are called on /// every newly created insertion. template class IRBuilder : public IRBuilderBase { private: FolderTy Folder; InserterTy Inserter; public: IRBuilder(LLVMContext &C, FolderTy Folder, InserterTy Inserter = InserterTy(), MDNode *FPMathTag = nullptr, ArrayRef OpBundles = std::nullopt) : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles), Folder(Folder), Inserter(Inserter) {} explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr, ArrayRef OpBundles = std::nullopt) : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles) {} explicit IRBuilder(BasicBlock *TheBB, FolderTy Folder, MDNode *FPMathTag = nullptr, ArrayRef OpBundles = std::nullopt) : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter, FPMathTag, OpBundles), Folder(Folder) { SetInsertPoint(TheBB); } explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr, ArrayRef OpBundles = std::nullopt) : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter, FPMathTag, OpBundles) { SetInsertPoint(TheBB); } explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr, ArrayRef OpBundles = std::nullopt) : IRBuilderBase(IP->getContext(), this->Folder, this->Inserter, FPMathTag, OpBundles) { SetInsertPoint(IP); } IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, FolderTy Folder, MDNode *FPMathTag = nullptr, ArrayRef OpBundles = std::nullopt) : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter, FPMathTag, OpBundles), Folder(Folder) { SetInsertPoint(TheBB, IP); } IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, MDNode *FPMathTag = nullptr, ArrayRef OpBundles = std::nullopt) : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter, FPMathTag, OpBundles) { SetInsertPoint(TheBB, IP); } /// Avoid copying the full IRBuilder. Prefer using InsertPointGuard /// or FastMathFlagGuard instead. IRBuilder(const IRBuilder &) = delete; InserterTy &getInserter() { return Inserter; } }; template IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef) -> IRBuilder; IRBuilder(LLVMContext &, MDNode *, ArrayRef) -> IRBuilder<>; template IRBuilder(BasicBlock *, FolderTy, MDNode *, ArrayRef) -> IRBuilder; IRBuilder(BasicBlock *, MDNode *, ArrayRef) -> IRBuilder<>; IRBuilder(Instruction *, MDNode *, ArrayRef) -> IRBuilder<>; template IRBuilder(BasicBlock *, BasicBlock::iterator, FolderTy, MDNode *, ArrayRef) -> IRBuilder; IRBuilder(BasicBlock *, BasicBlock::iterator, MDNode *, ArrayRef) -> IRBuilder<>; // Create wrappers for C Binding types (see CBindingWrapping.h). DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef) } // end namespace llvm #endif // LLVM_IR_IRBUILDER_H