module Language.Fixpoint.Types.Substitutions (
mkSubst
, isEmptySubst
, substExcept
, substfExcept
, subst1Except
, targetSubstSyms
, filterSubst
) where
import Data.Maybe
import qualified Data.HashMap.Strict as M
import qualified Data.HashSet as S
import Language.Fixpoint.Types.PrettyPrint
import Language.Fixpoint.Types.Names
import Language.Fixpoint.Types.Sorts
import Language.Fixpoint.Types.Refinements
import Language.Fixpoint.Misc
import Text.PrettyPrint.HughesPJ
import Text.Printf (printf)
instance Monoid Subst where
mempty = emptySubst
mappend = catSubst
filterSubst :: (Symbol -> Expr -> Bool) -> Subst -> Subst
filterSubst f (Su m) = Su (M.filterWithKey f m)
emptySubst :: Subst
emptySubst = Su M.empty
catSubst :: Subst -> Subst -> Subst
catSubst (Su s1) θ2@(Su s2) = Su $ M.union s1' s2
where
s1' = subst θ2 <$> s1
mkSubst :: [(Symbol, Expr)] -> Subst
mkSubst = Su . M.fromList . reverse . filter notTrivial
where
notTrivial (x, EVar y) = x /= y
notTrivial _ = True
isEmptySubst :: Subst -> Bool
isEmptySubst (Su xes) = M.null xes
targetSubstSyms :: Subst -> [Symbol]
targetSubstSyms (Su ms) = syms $ M.elems ms
instance Subable () where
syms _ = []
subst _ () = ()
substf _ () = ()
substa _ () = ()
instance (Subable a, Subable b) => Subable (a,b) where
syms (x, y) = syms x ++ syms y
subst su (x,y) = (subst su x, subst su y)
substf f (x,y) = (substf f x, substf f y)
substa f (x,y) = (substa f x, substa f y)
instance Subable a => Subable [a] where
syms = concatMap syms
subst = map . subst
substf = map . substf
substa = map . substa
instance Subable a => Subable (M.HashMap k a) where
syms = syms . M.elems
subst = M.map . subst
substf = M.map . substf
substa = M.map . substa
subst1Except :: (Subable a) => [Symbol] -> a -> (Symbol, Expr) -> a
subst1Except xs z su@(x, _)
| x `elem` xs = z
| otherwise = subst1 z su
substfExcept :: (Symbol -> Expr) -> [Symbol] -> Symbol -> Expr
substfExcept f xs y = if y `elem` xs then EVar y else f y
substExcept :: Subst -> [Symbol] -> Subst
substExcept (Su xes) xs = Su $ M.filterWithKey (const . not . (`elem` xs)) xes
instance Subable Symbol where
substa f = f
substf f x = subSymbol (Just (f x)) x
subst su x = subSymbol (Just $ appSubst su x) x
syms x = [x]
appSubst :: Subst -> Symbol -> Expr
appSubst (Su s) x = fromMaybe (EVar x) (M.lookup x s)
subSymbol :: Maybe Expr -> Symbol -> Symbol
subSymbol (Just (EVar y)) _ = y
subSymbol Nothing x = x
subSymbol a b = errorstar (printf "Cannot substitute symbol %s with expression %s" (showFix b) (showFix a))
substfLam :: (Symbol -> Expr) -> (Symbol, Sort) -> Expr -> Expr
substfLam f s@(x, _) e = ELam s (substf (\y -> if y == x then EVar x else f y) e)
instance Subable Expr where
syms = exprSymbols
substa f = substf (EVar . f)
substf f (EApp s e) = EApp (substf f s) (substf f e)
substf f (ELam x e) = substfLam f x e
substf f (ENeg e) = ENeg (substf f e)
substf f (EBin op e1 e2) = EBin op (substf f e1) (substf f e2)
substf f (EIte p e1 e2) = EIte (substf f p) (substf f e1) (substf f e2)
substf f (ECst e so) = ECst (substf f e) so
substf f (EVar x) = f x
substf f (PAnd ps) = PAnd $ map (substf f) ps
substf f (POr ps) = POr $ map (substf f) ps
substf f (PNot p) = PNot $ substf f p
substf f (PImp p1 p2) = PImp (substf f p1) (substf f p2)
substf f (PIff p1 p2) = PIff (substf f p1) (substf f p2)
substf f (PAtom r e1 e2) = PAtom r (substf f e1) (substf f e2)
substf _ p@(PKVar _ _) = p
substf _ (PAll _ _) = errorstar "substf: FORALL"
substf f (PGrad k su i e)= PGrad k su i (substf f e)
substf _ p = p
subst su (EApp f e) = EApp (subst su f) (subst su e)
subst su (ELam x e) = ELam x (subst (removeSubst su (fst x)) e)
subst su (ENeg e) = ENeg (subst su e)
subst su (EBin op e1 e2) = EBin op (subst su e1) (subst su e2)
subst su (EIte p e1 e2) = EIte (subst su p) (subst su e1) (subst su e2)
subst su (ECst e so) = ECst (subst su e) so
subst su (EVar x) = appSubst su x
subst su (PAnd ps) = PAnd $ map (subst su) ps
subst su (POr ps) = POr $ map (subst su) ps
subst su (PNot p) = PNot $ subst su p
subst su (PImp p1 p2) = PImp (subst su p1) (subst su p2)
subst su (PIff p1 p2) = PIff (subst su p1) (subst su p2)
subst su (PAtom r e1 e2) = PAtom r (subst su e1) (subst su e2)
subst su (PKVar k su') = PKVar k $ su' `catSubst` su
subst su (PGrad k su' i e) = PGrad k (su' `catSubst` su) i (subst su e)
subst su (PAll bs p)
| disjoint su bs = PAll bs $ subst su p
| otherwise = errorstar "subst: PAll (without disjoint binds)"
subst su (PExist bs p)
| disjoint su bs = PExist bs $ subst su p
| otherwise = errorstar ("subst: EXISTS (without disjoint binds)" ++ show (bs, su))
subst _ p = p
removeSubst :: Subst -> Symbol -> Subst
removeSubst (Su su) x = Su $ M.delete x su
disjoint :: Subst -> [(Symbol, Sort)] -> Bool
disjoint (Su su) bs = S.null $ suSyms `S.intersection` bsSyms
where
suSyms = S.fromList $ syms (M.elems su) ++ syms (M.keys su)
bsSyms = S.fromList $ syms $ fst <$> bs
instance Monoid Expr where
mempty = PTrue
mappend p q = pAnd [p, q]
mconcat = pAnd
instance Monoid Reft where
mempty = trueReft
mappend = meetReft
meetReft :: Reft -> Reft -> Reft
meetReft (Reft (v, ra)) (Reft (v', ra'))
| v == v' = Reft (v , ra `mappend` ra')
| v == dummySymbol = Reft (v', ra' `mappend` (ra `subst1` (v , EVar v')))
| otherwise = Reft (v , ra `mappend` (ra' `subst1` (v', EVar v )))
instance Monoid SortedReft where
mempty = RR mempty mempty
mappend t1 t2 = RR (mappend (sr_sort t1) (sr_sort t2)) (mappend (sr_reft t1) (sr_reft t2))
instance Subable Reft where
syms (Reft (v, ras)) = v : syms ras
substa f (Reft (v, ras)) = Reft (f v, substa f ras)
subst su (Reft (v, ras)) = Reft (v, subst (substExcept su [v]) ras)
substf f (Reft (v, ras)) = Reft (v, substf (substfExcept f [v]) ras)
subst1 (Reft (v, ras)) su = Reft (v, subst1Except [v] ras su)
instance Subable SortedReft where
syms = syms . sr_reft
subst su (RR so r) = RR so $ subst su r
substf f (RR so r) = RR so $ substf f r
substa f (RR so r) = RR so $ substa f r
instance Reftable () where
isTauto _ = True
ppTy _ d = d
top _ = ()
bot _ = ()
meet _ _ = ()
toReft _ = mempty
ofReft _ = mempty
params _ = []
instance Reftable Reft where
isTauto = all isTautoPred . conjuncts . reftPred
ppTy = pprReft
toReft = id
ofReft = id
params _ = []
bot _ = falseReft
top (Reft(v,_)) = Reft (v, mempty)
pprReft :: Reft -> Doc -> Doc
pprReft (Reft (v, p)) d
| isTautoPred p
= d
| otherwise
= braces (toFix v <+> colon <+> d <+> text "|" <+> ppRas [p])
instance Reftable SortedReft where
isTauto = isTauto . toReft
ppTy = ppTy . toReft
toReft = sr_reft
ofReft = errorstar "No instance of ofReft for SortedReft"
params _ = []
bot s = s { sr_reft = falseReft }
top s = s { sr_reft = trueReft }
instance PPrint Reft where
pprintTidy k r
| isTauto r = text "true"
| otherwise = pprintReft k r
instance PPrint SortedReft where
pprintTidy k (RR so (Reft (v, ras)))
= braces
$ pprintTidy k v <+> text ":" <+> toFix so <+> text "|" <+> pprintTidy k ras
instance Fixpoint Reft where
toFix = pprReftPred
instance Fixpoint SortedReft where
toFix (RR so (Reft (v, ra)))
= braces
$ toFix v <+> text ":" <+> toFix so <+> text "|" <+> toFix (conjuncts ra)
instance Show Reft where
show = showFix
instance Show SortedReft where
show = showFix
pprReftPred :: Reft -> Doc
pprReftPred (Reft (_, p))
| isTautoPred p
= text "true"
| otherwise
= ppRas [p]
ppRas :: [Expr] -> Doc
ppRas = cat . punctuate comma . map toFix . flattenRefas
exprSymbols :: Expr -> [Symbol]
exprSymbols = go
where
go (EVar x) = [x]
go (EApp f e) = go f ++ go e
go (ELam (x,_) e) = filter (/= x) (go e)
go (ENeg e) = go e
go (EBin _ e1 e2) = go e1 ++ go e2
go (EIte p e1 e2) = exprSymbols p ++ go e1 ++ go e2
go (ECst e _) = go e
go (PAnd ps) = concatMap go ps
go (POr ps) = concatMap go ps
go (PNot p) = go p
go (PIff p1 p2) = go p1 ++ go p2
go (PImp p1 p2) = go p1 ++ go p2
go (PAtom _ e1 e2) = exprSymbols e1 ++ exprSymbols e2
go (PKVar _ (Su su)) = syms (M.elems su)
go (PAll xts p) = (fst <$> xts) ++ go p
go _ = []