module Language.Fixpoint.Graph.Indexed (
IKVGraph (..)
, edgesIkvg
, ikvgEdges
, addLinks
, delNodes
, getSuccs
, getPreds
) where
import Language.Fixpoint.Graph.Types
import qualified Data.HashSet as S
import qualified Data.HashMap.Strict as M
import qualified Data.List as L
import Data.Hashable (Hashable)
data IKVGraph = IKVGraph
{ igSucc :: !(M.HashMap CVertex (S.HashSet CVertex))
, igPred :: !(M.HashMap CVertex (S.HashSet CVertex))
} deriving (Show)
addLinks :: IKVGraph -> [CEdge] -> IKVGraph
addLinks = L.foldl' addLink
addLink :: IKVGraph -> CEdge -> IKVGraph
addLink g (u, v) = addSucc (u, v) . addPred (u, v) $ g
delNodes :: IKVGraph -> [CVertex] -> IKVGraph
delNodes = L.foldl' delNode
delNode :: IKVGraph -> CVertex -> IKVGraph
delNode g v = delVtx v . txMany delSucc uvs . txMany delPred vws $ g
where
uvs = [ (u, v) | u <- getPreds g v ]
vws = [ (v, w) | w <- getSuccs g v ]
edgesIkvg :: [CEdge] -> IKVGraph
edgesIkvg = addLinks empty
ikvgEdges :: IKVGraph -> [CEdge]
ikvgEdges g = [ (u, v) | (u, vs) <- M.toList (igSucc g), v <- S.toList vs]
getSuccs :: IKVGraph -> CVertex -> [CVertex]
getSuccs g u = S.toList $ M.lookupDefault S.empty u (igSucc g)
getPreds :: IKVGraph -> CVertex -> [CVertex]
getPreds g v = S.toList $ M.lookupDefault S.empty v (igPred g)
empty :: IKVGraph
empty = IKVGraph M.empty M.empty
txMany :: (a -> b -> b) -> [a] -> b -> b
txMany op es g = L.foldl' (flip op) g es
addSucc :: CEdge -> IKVGraph -> IKVGraph
addSucc (u, v) g = g { igSucc = inserts u v (igSucc g) }
addPred :: CEdge -> IKVGraph -> IKVGraph
addPred (u, v) g = g { igPred = inserts v u (igPred g) }
delSucc :: CEdge -> IKVGraph -> IKVGraph
delSucc (u, v) g = g { igSucc = removes u v (igSucc g)}
delPred :: (CVertex, CVertex) -> IKVGraph -> IKVGraph
delPred (u, v) g = g { igPred = removes v u (igPred g)}
delVtx :: CVertex -> IKVGraph -> IKVGraph
delVtx v g = g { igSucc = M.delete v (igSucc g) }
{ igPred = M.delete v (igPred g) }
inserts :: (Eq k, Eq v, Hashable k, Hashable v)
=> k -> v -> M.HashMap k (S.HashSet v) -> M.HashMap k (S.HashSet v)
inserts k v m = M.insert k (S.insert v $ M.lookupDefault S.empty k m) m
removes :: (Eq k, Eq v, Hashable k, Hashable v)
=> k -> v -> M.HashMap k (S.HashSet v) -> M.HashMap k (S.HashSet v)
removes k v m = M.insert k (S.delete v (M.lookupDefault S.empty k m)) m