module Language.Fixpoint.Graph.Deps (
slice
, isTarget
, Elims (..)
, elimVars
, elimDeps
, kvEdges
, decompose
, graphStatistics
) where
import Prelude hiding (init)
import Data.Maybe (mapMaybe, fromMaybe)
import Data.Tree (flatten)
import Language.Fixpoint.Misc
import Language.Fixpoint.Utils.Files
import Language.Fixpoint.Types.Config
import qualified Language.Fixpoint.Types.Visitor as V
import Language.Fixpoint.Types.PrettyPrint
import qualified Language.Fixpoint.Types as F
import Language.Fixpoint.Graph.Types
import Language.Fixpoint.Graph.Reducible (isReducible)
import Language.Fixpoint.Graph.Indexed
import Control.Monad (when)
import qualified Data.HashSet as S
import qualified Data.List as L
import qualified Data.HashMap.Strict as M
import qualified Data.Graph as G
import Data.Function (on)
import Data.Hashable
import Text.PrettyPrint.HughesPJ
import Debug.Trace (trace)
slice :: (F.TaggedC c a) => Config -> F.GInfo c a -> F.GInfo c a
slice cfg fi
| noslice cfg
= fi
| otherwise
= fi { F.cm = cm'
, F.ws = ws' }
where
cm' = M.filterWithKey inC (F.cm fi)
ws' = M.filterWithKey inW (F.ws fi)
ks = sliceKVars fi sl
is = S.fromList (slKVarCs sl ++ slConcCs sl)
sl = mkSlice fi
inC i _ = S.member i is
inW k _ = S.member k ks
sliceKVars :: (F.TaggedC c a) => F.GInfo c a -> Slice -> S.HashSet F.KVar
sliceKVars fi sl = S.fromList $ concatMap (subcKVars be) cs
where
cs = lookupCMap cm <$> slKVarCs sl ++ slConcCs sl
be = F.bs fi
cm = F.cm fi
subcKVars :: (F.TaggedC c a) => F.BindEnv -> c a -> [F.KVar]
subcKVars be c = V.envKVars be c ++ V.rhsKVars c
mkSlice :: (F.TaggedC c a) => F.GInfo c a -> Slice
mkSlice fi = mkSlice_ (F.cm fi) g' es v2i i2v
where
g' = G.transposeG g
(g, vf, cf) = G.graphFromEdges es
es = gEdges $ cGraph fi
v2i = fst3 . vf
i2v i = fromMaybe (errU i) $ cf i
errU i = errorstar $ "graphSlice: Unknown constraint " ++ show i
mkSlice_ :: F.TaggedC c a
=> M.HashMap F.SubcId (c a)
-> G.Graph
-> [DepEdge]
-> (G.Vertex -> F.SubcId)
-> (F.SubcId -> G.Vertex)
-> Slice
mkSlice_ cm g' es v2i i2v = Slice { slKVarCs = kvarCs
, slConcCs = concCs
, slEdges = sliceEdges kvarCs es
}
where
concCs = [ i | (i, c) <- M.toList cm, isTarget c ]
kvarCs = v2i <$> reachVs
rootVs = i2v <$> concCs
reachVs = concatMap flatten $ G.dfs g' rootVs
sliceEdges :: [F.SubcId] -> [DepEdge] -> [DepEdge]
sliceEdges is es = [ (i, i, filter inSlice js) | (i, _, js) <- es, inSlice i ]
where
inSlice i = M.member i im
im = M.fromList $ (, ()) <$> is
isTarget :: (F.TaggedC c a) => c a -> Bool
isTarget c = V.isConcC c && isNonTriv c
where
isNonTriv = not . F.isTautoPred . F.crhs
cGraph :: (F.TaggedC c a) => F.GInfo c a -> CGraph
cGraph fi = CGraph { gEdges = es
, gRanks = outRs
, gSucc = next
, gSccs = length sccs }
where
es = [(i, i, M.lookupDefault [] i next) | i <- M.keys $ F.cm fi]
next = kvSucc fi
(g, vf, _) = G.graphFromEdges es
(outRs, sccs) = graphRanks g vf
graphRanks :: G.Graph -> (G.Vertex -> DepEdge) -> (CMap Int, [[G.Vertex]])
graphRanks g vf = (M.fromList irs, sccs)
where
irs = [(v2i v, r) | (r, vs) <- rvss, v <- vs ]
rvss = zip [0..] sccs
sccs = L.reverse $ map flatten $ G.scc g
v2i = fst3 . vf
kvSucc :: (F.TaggedC c a) => F.GInfo c a -> CMap [F.SubcId]
kvSucc fi = succs cm rdBy
where
rdBy = kvReadBy fi
cm = F.cm fi
succs :: (F.TaggedC c a) => CMap (c a) -> KVRead -> CMap [F.SubcId]
succs cm rdBy = (sortNub . concatMap kvReads . kvWrites) <$> cm
where
kvReads k = M.lookupDefault [] k rdBy
kvWrites = V.kvars . F.crhs
kvWriteBy :: (F.TaggedC c a) => CMap (c a) -> F.SubcId -> [F.KVar]
kvWriteBy cm = V.kvars . F.crhs . lookupCMap cm
kvReadBy :: (F.TaggedC c a) => F.GInfo c a -> KVRead
kvReadBy fi = group [ (k, i) | (i, ci) <- M.toList cm
, k <- V.envKVars bs ci]
where
cm = F.cm fi
bs = F.bs fi
decompose :: (F.TaggedC c a) => F.GInfo c a -> KVComps
decompose = componentsWith (kvgEdges . kvGraph)
kvGraph :: (F.TaggedC c a) => F.GInfo c a -> KVGraph
kvGraph = edgeGraph . kvEdges
edgeGraph :: [CEdge] -> KVGraph
edgeGraph es = KVGraph [(v, v, vs) | (v, vs) <- groupList es ]
kvEdges :: (F.TaggedC c a) => F.GInfo c a -> [CEdge]
kvEdges fi = selfes ++ concatMap (subcEdges bs) cs
where
bs = F.bs fi
cs = M.elems (F.cm fi)
ks = fiKVars fi
selfes = [(Cstr i , Cstr i) | c <- cs, let i = F.subcId c]
++ [(KVar k , DKVar k) | k <- ks]
++ [(DKVar k, DKVar k) | k <- ks]
fiKVars :: F.GInfo c a -> [F.KVar]
fiKVars = M.keys . F.ws
subcEdges :: (F.TaggedC c a) => F.BindEnv -> c a -> [CEdge]
subcEdges bs c = [(KVar k, Cstr i ) | k <- V.envKVars bs c]
++ [(Cstr i, KVar k') | k' <- V.rhsKVars c ]
where
i = F.subcId c
elimDeps :: (F.TaggedC c a) => F.GInfo c a -> [CEdge] -> S.HashSet F.KVar -> CDeps
elimDeps si es nonKutVs = graphDeps si es'
where
es' = graphElim es nonKutVs
_msg = "graphElim: " ++ show (length es')
graphElim :: [CEdge] -> S.HashSet F.KVar -> [CEdge]
graphElim es ks = ikvgEdges $ elimKs ks $ edgesIkvg es
where
elimKs = flip (S.foldl' elimK)
elimK :: IKVGraph -> F.KVar -> IKVGraph
elimK g k = (g `addLinks` es') `delNodes` (kV : cis)
where
es' = [(ki, c) | ki@(KVar _) <- kis, c@(Cstr _) <- cs]
cs = getSuccs g kV
cis = getPreds g kV
kis = concatMap (getPreds g) cis
kV = KVar k
data Elims a
= Deps { depCuts :: !(S.HashSet a)
, depNonCuts :: !(S.HashSet a)
}
deriving (Show)
instance PPrint (Elims a) where
pprintTidy _ d = "#Cuts =" <+> ppSize (depCuts d) <+>
"#NonCuts =" <+> ppSize (depNonCuts d)
where
ppSize = pprint . S.size
instance (Eq a, Hashable a) => Monoid (Elims a) where
mempty = Deps S.empty S.empty
mappend (Deps d1 n1) (Deps d2 n2) = Deps (S.union d1 d2) (S.union n1 n2)
dCut, dNonCut :: (Hashable a) => a -> Elims a
dNonCut v = Deps S.empty (S.singleton v)
dCut v = Deps (S.singleton v) S.empty
elimVars :: (F.TaggedC c a) => Config -> F.GInfo c a -> ([CEdge], Elims F.KVar)
elimVars cfg si = (es, ds)
where
ds = edgeDeps cfg si es
es = kvEdges si
removeKutEdges :: S.HashSet F.KVar -> [CEdge] -> [CEdge]
removeKutEdges ks = filter (not . isKut . snd)
where
cutVs = S.map KVar ks
isKut = (`S.member` cutVs)
cutVars :: (F.TaggedC c a) => Config -> F.GInfo c a -> S.HashSet F.KVar
cutVars cfg si
| autoKuts cfg = S.empty
| otherwise = F.ksVars . F.kuts $ si
forceKuts :: (Hashable a, Eq a) => S.HashSet a -> Elims a -> Elims a
forceKuts xs (Deps cs ns) = Deps (S.union cs xs) (S.difference ns xs)
edgeDeps :: (F.TaggedC c a) => Config -> F.GInfo c a -> [CEdge] -> Elims F.KVar
edgeDeps cfg si = forceKuts ks
. edgeDeps' cfg
. removeKutEdges ks
. filter isRealEdge
where
ks = givenKs `S.union` nlKs
givenKs = cutVars cfg si
nlKs
| nonLinCuts cfg = nonLinearKVars si
| otherwise = mempty
edgeDeps' :: Config -> [CEdge] -> Elims F.KVar
edgeDeps' cfg es = Deps (takeK cs) (takeK ns)
where
Deps cs ns = gElims cfg kF cutF g
g = kvgEdges (edgeGraph es)
cutF = edgeRankCut (edgeRank es)
takeK = sMapMaybe tx
tx (KVar z) = Just z
tx _ = Nothing
kF (KVar _) = True
kF _ = False
sMapMaybe :: (Hashable b, Eq b) => (a -> Maybe b) -> S.HashSet a -> S.HashSet b
sMapMaybe f = S.fromList . mapMaybe f . S.toList
type EdgeRank = M.HashMap F.KVar Integer
edgeRank :: [CEdge] -> EdgeRank
edgeRank es = minimum . (n :) <$> kiM
where
n = 1 + maximum [ i | (Cstr i, _) <- es ]
kiM = group [ (k, i) | (KVar k, Cstr i) <- es ]
edgeRankCut :: EdgeRank -> Cutter CVertex
edgeRankCut km vs = case ks of
[] -> Nothing
k:_ -> Just (KVar k, [x | x@(u,_,_) <- vs, u /= KVar k])
where
ks = orderBy [k | (KVar k, _ ,_) <- vs]
rank = (km M.!)
orderBy = L.sortBy (compare `on` rank)
type Cutter a = [(a, a, [a])] -> Maybe (a, [(a, a, [a])])
type Cutable a = (Eq a, Ord a, Hashable a, Show a)
gElims :: (Cutable a) => Config -> (a -> Bool) -> Cutter a -> [(a, a, [a])] -> Elims a
gElims cfg kF cutF g = boundElims cfg kF g $ sccElims cutF g
sccElims :: (Cutable a) => Cutter a -> [(a, a, [a])] -> Elims a
sccElims f = sccsToDeps f . G.stronglyConnCompR
sccsToDeps :: (Cutable a) => Cutter a -> [G.SCC (a, a, [a])] -> Elims a
sccsToDeps f xs = mconcat $ sccDep f <$> xs
sccDep :: (Cutable a) => Cutter a -> G.SCC (a, a, [a]) -> Elims a
sccDep _ (G.AcyclicSCC (v,_,_)) = dNonCut v
sccDep f (G.CyclicSCC vs) = cycleDep f vs
cycleDep :: (Cutable a) => Cutter a -> [(a, a, [a])] -> Elims a
cycleDep _ [] = mempty
cycleDep f vs = addCut f (f vs)
addCut :: (Cutable a) => Cutter a -> Maybe (a, [(a, a, [a])]) -> Elims a
addCut _ Nothing = mempty
addCut f (Just (v, vs')) = mconcat $ dCut v : (sccDep f <$> sccs)
where
sccs = G.stronglyConnCompR vs'
boundElims :: (Cutable a) => Config -> (a -> Bool) -> [(a, a, [a])] -> Elims a -> Elims a
boundElims cfg isK es ds = maybe ds (bElims isK es ds) (elimBound cfg)
bElims :: (Cutable a) => (a -> Bool) -> [(a, a, [a])] -> Elims a -> Int -> Elims a
bElims isK es ds dMax = forceKuts kS' ds
where
(_ , kS') = L.foldl' step (M.empty, depCuts ds) vs
vs = topoSort ds es
predM = invertEdges es
addK v ks
| isK v = S.insert v ks
| otherwise = ks
zero = (0, S.empty)
step (dM, kS) v
| v `S.member` kS = (M.insert v zero dM, kS)
| vDist < dMax = (M.insert v dv dM, kS)
| otherwise = (M.insert v zero dM, addK v kS)
where
dv = trace msg dv_
msg = show v ++ " DIST =" ++ show vDist ++ " SIZE = " ++ show vSize
dv_@(vDist, s) = distV predM v dM
vSize = S.size s
distV :: (Cutable a) => M.HashMap a [a] -> a -> M.HashMap a (Int, S.HashSet a) -> (Int, S.HashSet a)
distV predM v dM = (d, s)
where
d = 1 + maximumDef 0 (fst . du <$> us)
s = S.insert v (S.unions (snd . du <$> us))
du u = fromMaybe (oops u) $ M.lookup u dM
us = M.lookupDefault [] v predM
oops u = errorstar $ "dist: don't have dist for " ++ show u ++ " when checking " ++ show v
topoSort :: (Cutable a) => Elims a -> [(a, a, [a])] -> [a]
topoSort ds = G.flattenSCCs . reverse . G.stronglyConnComp . ripKuts ds
ripKuts :: (Cutable a) => Elims a -> [(a, a, [a])] -> [(a, a, [a])]
ripKuts ds es = [ (u, x, notKuts vs) | (u, x, vs) <- es ]
where
notKuts = filter (not . (`S.member` ks))
ks = depCuts ds
invertEdges :: (Cutable a) => [(a, a, [a])] -> M.HashMap a [a]
invertEdges es = group [ (v, u) | (u, _, vs) <- es, v <- vs ]
maximumDef :: (Ord a) => a -> [a] -> a
maximumDef d [] = d
maximumDef _ xs = maximum xs
graphDeps :: F.TaggedC c a => F.GInfo c a -> [CEdge] -> CDeps
graphDeps fi cs = CDs { cSucc = gSucc cg
, cPrev = cPrevM
, cNumScc = gSccs cg
, cRank = M.fromList [(i, rf i) | i <- is ]
}
where
rf = rankF (F.cm fi) outRs inRs
inRs = inRanks fi es outRs
outRs = gRanks cg
es = gEdges cg
cg = cGraphCE cs
is = [i | (Cstr i, _) <- cs]
cPrevM = sortNub <$> group [ (i, k) | (KVar k, Cstr i) <- cs ]
cGraphCE :: [CEdge] -> CGraph
cGraphCE cs = CGraph { gEdges = es
, gRanks = outRs
, gSucc = next
, gSccs = length sccs }
where
es = [(i, i, M.lookupDefault [] i next) | (Cstr i, _) <- cs]
next = cSuccM cs
(g, vf, _) = G.graphFromEdges es
(outRs, sccs) = graphRanks g vf
cSuccM :: [CEdge] -> CMap [F.SubcId]
cSuccM es = (sortNub . concatMap kRdBy) <$> iWrites
where
kRdBy k = M.lookupDefault [] k kReads
iWrites = group [ (i, k) | (Cstr i, KVar k) <- es ]
kReads = group [ (k, j) | (KVar k, Cstr j) <- es ]
rankF :: F.TaggedC c a => CMap (c a) -> CMap Int -> CMap Int -> F.SubcId -> Rank
rankF cm outR inR = \i -> Rank (outScc i) (inScc i) (tag i)
where
outScc = lookupCMap outR
inScc = lookupCMap inR
tag = F.stag . lookupCMap cm
inRanks :: F.TaggedC c a => F.GInfo c a -> [DepEdge] -> CMap Int -> CMap Int
inRanks fi es outR
| ks == mempty = outR
| otherwise = fst $ graphRanks g' vf'
where
ks = F.kuts fi
cm = F.cm fi
(g', vf', _) = G.graphFromEdges es'
es' = [(i, i, filter (not . isCut i) js) | (i,_,js) <- es ]
isCut i j = S.member i cutCIds && isEqOutRank i j
isEqOutRank i j = lookupCMap outR i == lookupCMap outR j
cutCIds = S.fromList [i | i <- M.keys cm, isKutWrite i ]
isKutWrite = any (`F.ksMember` ks) . kvWriteBy cm
graphStatistics :: F.TaggedC c a => Config -> F.GInfo c a -> IO ()
graphStatistics cfg si = when (elimStats cfg) $ do
writeEdges f es'
appendFile f . ppc . ptable $ graphStats cfg si
where
f = queryFile Dot cfg
es' = removeKutEdges (depCuts ds) es
(es, ds) = elimVars cfg si
ppc d = showpp $ vcat [" ", " ", "/*", pprint d, "*/"]
data Stats = Stats {
stNumKVCuts :: !Int
, stNumKVNonLin :: !Int
, stNumKVTotal :: !Int
, stIsReducible :: !Bool
, stSetKVNonLin :: !(S.HashSet F.KVar)
}
instance PTable Stats where
ptable (Stats {..}) = DocTable [
("# KVars [Cut]" , pprint stNumKVCuts)
, ("# KVars [NonLin]" , pprint stNumKVNonLin)
, ("# KVars [All]" , pprint stNumKVTotal)
, ("# Reducible" , pprint stIsReducible)
, ("KVars NonLin" , pprint stSetKVNonLin)
]
graphStats :: F.TaggedC c a => Config -> F.GInfo c a -> Stats
graphStats cfg si = Stats {
stNumKVCuts = S.size $ F.tracepp "CUTS:" (depCuts d)
, stNumKVNonLin = S.size nlks
, stNumKVTotal = S.size (depCuts d) + S.size (depNonCuts d)
, stIsReducible = isReducible si
, stSetKVNonLin = nlks
}
where
nlks = nonLinearKVars si
d = snd $ elimVars cfg si
nonLinearKVars :: (F.TaggedC c a) => F.GInfo c a -> S.HashSet F.KVar
nonLinearKVars fi = S.unions $ nlKVarsC bs <$> cs
where
bs = F.bs fi
cs = M.elems (F.cm fi)
nlKVarsC :: (F.TaggedC c a) => F.BindEnv -> c a -> S.HashSet F.KVar
nlKVarsC bs c = S.fromList [ k | (k, n) <- V.envKVarsN bs c, n >= 2]