module Linear.Algebra
( Algebra(..)
, Coalgebra(..)
, multRep, unitalRep
, comultRep, counitalRep
) where
import Control.Lens hiding (index)
import Data.Functor.Rep
import Data.Complex
import Data.Void
import Linear.Vector
import Linear.Quaternion
import Linear.Conjugate
import Linear.V0
import Linear.V1
import Linear.V2
import Linear.V3
import Linear.V4
class Num r => Algebra r m where
mult :: (m -> m -> r) -> m -> r
unital :: r -> m -> r
multRep :: (Representable f, Algebra r (Rep f)) => f (f r) -> f r
multRep ffr = tabulate $ mult (index . index ffr)
unitalRep :: (Representable f, Algebra r (Rep f)) => r -> f r
unitalRep = tabulate . unital
instance Num r => Algebra r Void where
mult _ _ = 0
unital _ _ = 0
instance Num r => Algebra r (E V0) where
mult _ _ = 0
unital _ _ = 0
instance Num r => Algebra r (E V1) where
mult f _ = f ex ex
unital r _ = r
instance Num r => Algebra r () where
mult f () = f () ()
unital r () = r
instance (Algebra r a, Algebra r b) => Algebra r (a, b) where
mult f (a,b) = mult (\a1 a2 -> mult (\b1 b2 -> f (a1,b1) (a2,b2)) b) a
unital r (a,b) = unital r a * unital r b
instance Num r => Algebra r (E Complex) where
mult f = \ i -> c^.el i where
c = (f ee ee f ei ei) :+ (f ee ei + f ei ee)
unital r i = (r :+ 0)^.el i
instance (Num r, TrivialConjugate r) => Algebra r (E Quaternion) where
mult f = index $ Quaternion
(f ee ee (f ei ei + f ej ej + f ek ek))
(V3 (f ee ei + f ei ee + f ej ek f ek ej)
(f ee ej + f ej ee + f ek ei f ei ek)
(f ee ek + f ek ee + f ei ej f ej ei))
unital r = index (Quaternion r 0)
class Num r => Coalgebra r m where
comult :: (m -> r) -> m -> m -> r
counital :: (m -> r) -> r
comultRep :: (Representable f, Coalgebra r (Rep f)) => f r -> f (f r)
comultRep fr = tabulate $ \i -> tabulate $ \j -> comult (index fr) i j
counitalRep :: (Representable f, Coalgebra r (Rep f)) => f r -> r
counitalRep = counital . index
instance Num r => Coalgebra r Void where
comult _ _ _ = 0
counital _ = 0
instance Num r => Coalgebra r () where
comult f () () = f ()
counital f = f ()
instance Num r => Coalgebra r (E V0) where
comult _ _ _ = 0
counital _ = 0
instance Num r => Coalgebra r (E V1) where
comult f _ _ = f ex
counital f = f ex
instance Num r => Coalgebra r (E V2) where
comult f = index . index v where
v = V2 (V2 (f ex) 0) (V2 0 (f ey))
counital f = f ex + f ey
instance Num r => Coalgebra r (E V3) where
comult f = index . index q where
q = V3 (V3 (f ex) 0 0)
(V3 0 (f ey) 0)
(V3 0 0 (f ez))
counital f = f ex + f ey + f ez
instance Num r => Coalgebra r (E V4) where
comult f = index . index v where
v = V4 (V4 (f ex) 0 0 0) (V4 0 (f ey) 0 0) (V4 0 0 (f ez) 0) (V4 0 0 0 (f ew))
counital f = f ex + f ey + f ez + f ew
instance Num r => Coalgebra r (E Complex) where
comult f = \i j -> c^.el i.el j where
c = (f ee :+ 0) :+ (0 :+ f ei)
counital f = f ee + f ei
instance (Num r, TrivialConjugate r) => Coalgebra r (E Quaternion) where
comult f = index . index
(Quaternion (Quaternion (f ee) (V3 0 0 0))
(V3 (Quaternion 0 (V3 (f ei) 0 0))
(Quaternion 0 (V3 0 (f ej) 0))
(Quaternion 0 (V3 0 0 (f ek)))))
counital f = f ee + f ei + f ej + f ek
instance (Coalgebra r m, Coalgebra r n) => Coalgebra r (m, n) where
comult f (a1, b1) (a2, b2) = comult (\a -> comult (\b -> f (a, b)) b1 b2) a1 a2
counital k = counital $ \a -> counital $ \b -> k (a,b)