{-# LANGUAGE CPP #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FunctionalDependencies #-} #ifdef TRUSTWORTHY {-# LANGUAGE Trustworthy #-} -- vector, hashable #endif #if __GLASGOW_HASKELL__ >= 711 {-# OPTIONS_GHC -fno-warn-redundant-constraints #-} #endif #ifndef MIN_VERSION_containers #define MIN_VERSION_containers(x,y,z) 1 #endif ------------------------------------------------------------------------------- -- | -- Module : Control.Lens.Indexed -- Copyright : (C) 2012-16 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : Rank2Types -- -- (The classes in here need to be defined together for @DefaultSignatures@ to work.) ------------------------------------------------------------------------------- module Control.Lens.Indexed ( -- * Indexing Indexable(..) , Conjoined(..) , Indexed(..) , (<.), (<.>), (.>) , selfIndex , reindexed , icompose , indexing , indexing64 -- * Indexed Functors , FunctorWithIndex(..) -- * Indexed Foldables , FoldableWithIndex(..) -- ** Indexed Foldable Combinators , iany , iall , inone, none , itraverse_ , ifor_ , imapM_ , iforM_ , iconcatMap , ifind , ifoldrM , ifoldlM , itoList -- * Converting to Folds , withIndex , asIndex -- * Restricting by Index , indices , index -- * Indexed Traversables , TraversableWithIndex(..) -- * Indexed Traversable Combinators , ifor , imapM , iforM , imapAccumR , imapAccumL -- * Indexed Folds with Reified Monoid , ifoldMapBy , ifoldMapByOf -- * Indexed Traversals with Reified Applicative , itraverseBy , itraverseByOf ) where import Control.Applicative import Control.Applicative.Backwards import Control.Comonad.Cofree import Control.Comonad.Trans.Traced import Control.Monad (void, liftM) import Control.Monad.Trans.Identity import Control.Monad.Trans.Reader import Control.Monad.Trans.State.Lazy as Lazy import Control.Monad.Free import Control.Lens.Fold import Control.Lens.Getter import Control.Lens.Internal.Fold import Control.Lens.Internal.Indexed import Control.Lens.Internal.Level import Control.Lens.Internal.Magma import Control.Lens.Setter import Control.Lens.Traversal import Control.Lens.Type import Data.Array (Array) import qualified Data.Array as Array import Data.Foldable import Data.Functor.Compose import Data.Functor.Contravariant import Data.Functor.Product import Data.Functor.Reverse import Data.Hashable import Data.HashMap.Lazy as HashMap import Data.IntMap as IntMap import Data.Ix (Ix) import Data.List.NonEmpty as NonEmpty import Data.Map as Map import Data.Monoid hiding (Product) import Data.Profunctor.Unsafe import Data.Reflection import Data.Sequence hiding ((:<), index) #if !(MIN_VERSION_containers(0,5,0)) import Data.Traversable (sequenceA) #endif import Data.Tree import Data.Tuple (swap) import Data.Vector (Vector) import qualified Data.Vector as V import Prelude infixr 9 <.>, <., .> -- $setup -- >>> :set -XNoOverloadedStrings -- >>> import Control.Lens -- | Compose an 'Indexed' function with a non-indexed function. -- -- Mnemonically, the @<@ points to the indexing we want to preserve. -- -- >>> let nestedMap = (fmap Map.fromList . Map.fromList) [(1, [(10, "one,ten"), (20, "one,twenty")]), (2, [(30, "two,thirty"), (40,"two,forty")])] -- >>> nestedMap^..(itraversed<.itraversed).withIndex -- [(1,"one,ten"),(1,"one,twenty"),(2,"two,thirty"),(2,"two,forty")] (<.) :: Indexable i p => (Indexed i s t -> r) -> ((a -> b) -> s -> t) -> p a b -> r (<.) f g h = f . Indexed $ g . indexed h {-# INLINE (<.) #-} -- | Compose a non-indexed function with an 'Indexed' function. -- -- Mnemonically, the @>@ points to the indexing we want to preserve. -- -- This is the same as @('.')@. -- -- @f '.' g@ (and @f '.>' g@) gives you the index of @g@ unless @g@ is index-preserving, like a -- 'Prism', 'Iso' or 'Equality', in which case it'll pass through the index of @f@. -- -- >>> let nestedMap = (fmap Map.fromList . Map.fromList) [(1, [(10, "one,ten"), (20, "one,twenty")]), (2, [(30, "two,thirty"), (40,"two,forty")])] -- >>> nestedMap^..(itraversed.>itraversed).withIndex -- [(10,"one,ten"),(20,"one,twenty"),(30,"two,thirty"),(40,"two,forty")] (.>) :: (st -> r) -> (kab -> st) -> kab -> r (.>) = (.) {-# INLINE (.>) #-} -- | Use a value itself as its own index. This is essentially an indexed version of 'id'. -- -- Note: When used to modify the value, this can break the index requirements assumed by 'indices' and similar, -- so this is only properly an 'IndexedGetter', but it can be used as more. -- -- @ -- 'selfIndex' :: 'IndexedGetter' a a b -- @ selfIndex :: Indexable a p => p a fb -> a -> fb selfIndex f a = indexed f a a {-# INLINE selfIndex #-} -- | Remap the index. reindexed :: Indexable j p => (i -> j) -> (Indexed i a b -> r) -> p a b -> r reindexed ij f g = f . Indexed $ indexed g . ij {-# INLINE reindexed #-} -- | Composition of 'Indexed' functions. -- -- Mnemonically, the @\<@ and @\>@ points to the fact that we want to preserve the indices. -- -- >>> let nestedMap = (fmap Map.fromList . Map.fromList) [(1, [(10, "one,ten"), (20, "one,twenty")]), (2, [(30, "two,thirty"), (40,"two,forty")])] -- >>> nestedMap^..(itraversed<.>itraversed).withIndex -- [((1,10),"one,ten"),((1,20),"one,twenty"),((2,30),"two,thirty"),((2,40),"two,forty")] (<.>) :: Indexable (i, j) p => (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> p a b -> r f <.> g = icompose (,) f g {-# INLINE (<.>) #-} -- | Composition of 'Indexed' functions with a user supplied function for combining indices. icompose :: Indexable p c => (i -> j -> p) -> (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> c a b -> r icompose ijk istr jabst cab = istr . Indexed $ \i -> jabst . Indexed $ \j -> indexed cab $ ijk i j {-# INLINE icompose #-} ------------------------------------------------------------------------------- -- Restricting by index ------------------------------------------------------------------------------- -- | This allows you to filter an 'IndexedFold', 'IndexedGetter', 'IndexedTraversal' or 'IndexedLens' based on a predicate -- on the indices. -- -- >>> ["hello","the","world","!!!"]^..traversed.indices even -- ["hello","world"] -- -- >>> over (traversed.indices (>0)) Prelude.reverse $ ["He","was","stressed","o_O"] -- ["He","saw","desserts","O_o"] indices :: (Indexable i p, Applicative f) => (i -> Bool) -> Optical' p (Indexed i) f a a indices p f = Indexed $ \i a -> if p i then indexed f i a else pure a {-# INLINE indices #-} -- | This allows you to filter an 'IndexedFold', 'IndexedGetter', 'IndexedTraversal' or 'IndexedLens' based on an index. -- -- >>> ["hello","the","world","!!!"]^?traversed.index 2 -- Just "world" index :: (Indexable i p, Eq i, Applicative f) => i -> Optical' p (Indexed i) f a a index j f = Indexed $ \i a -> if j == i then indexed f i a else pure a {-# INLINE index #-} ------------------------------------------------------------------------------- -- FunctorWithIndex ------------------------------------------------------------------------------- -- | A 'Functor' with an additional index. -- -- Instances must satisfy a modified form of the 'Functor' laws: -- -- @ -- 'imap' f '.' 'imap' g ≡ 'imap' (\\i -> f i '.' g i) -- 'imap' (\\_ a -> a) ≡ 'id' -- @ class Functor f => FunctorWithIndex i f | f -> i where -- | Map with access to the index. imap :: (i -> a -> b) -> f a -> f b #ifndef HLINT default imap :: TraversableWithIndex i f => (i -> a -> b) -> f a -> f b imap = iover itraversed {-# INLINE imap #-} #endif -- | The 'IndexedSetter' for a 'FunctorWithIndex'. -- -- If you don't need access to the index, then 'mapped' is more flexible in what it accepts. imapped :: IndexedSetter i (f a) (f b) a b imapped = conjoined mapped (isets imap) {-# INLINE imapped #-} ------------------------------------------------------------------------------- -- FoldableWithIndex ------------------------------------------------------------------------------- -- | A container that supports folding with an additional index. class Foldable f => FoldableWithIndex i f | f -> i where -- -- | Fold a container by mapping value to an arbitrary 'Monoid' with access to the index @i@. -- -- When you don't need access to the index then 'foldMap' is more flexible in what it accepts. -- -- @ -- 'foldMap' ≡ 'ifoldMap' '.' 'const' -- @ ifoldMap :: Monoid m => (i -> a -> m) -> f a -> m #ifndef HLINT default ifoldMap :: (TraversableWithIndex i f, Monoid m) => (i -> a -> m) -> f a -> m ifoldMap = ifoldMapOf itraversed {-# INLINE ifoldMap #-} #endif -- | The 'IndexedFold' of a 'FoldableWithIndex' container. -- -- @'ifolded' '.' 'asIndex'@ is a fold over the keys of a 'FoldableWithIndex'. -- -- >>> Data.Map.fromList [(2, "hello"), (1, "world")]^..ifolded.asIndex -- [1,2] ifolded :: IndexedFold i (f a) a ifolded = conjoined folded $ \f -> phantom . getFolding . ifoldMap (\i -> Folding #. indexed f i) {-# INLINE ifolded #-} -- | Right-associative fold of an indexed container with access to the index @i@. -- -- When you don't need access to the index then 'Data.Foldable.foldr' is more flexible in what it accepts. -- -- @ -- 'Data.Foldable.foldr' ≡ 'ifoldr' '.' 'const' -- @ ifoldr :: (i -> a -> b -> b) -> b -> f a -> b ifoldr f z t = appEndo (ifoldMap (\i -> Endo #. f i) t) z {-# INLINE ifoldr #-} -- | Left-associative fold of an indexed container with access to the index @i@. -- -- When you don't need access to the index then 'Data.Foldable.foldl' is more flexible in what it accepts. -- -- @ -- 'Data.Foldable.foldl' ≡ 'ifoldl' '.' 'const' -- @ ifoldl :: (i -> b -> a -> b) -> b -> f a -> b ifoldl f z t = appEndo (getDual (ifoldMap (\i -> Dual #. Endo #. flip (f i)) t)) z {-# INLINE ifoldl #-} -- | /Strictly/ fold right over the elements of a structure with access to the index @i@. -- -- When you don't need access to the index then 'foldr'' is more flexible in what it accepts. -- -- @ -- 'foldr'' ≡ 'ifoldr'' '.' 'const' -- @ ifoldr' :: (i -> a -> b -> b) -> b -> f a -> b ifoldr' f z0 xs = ifoldl f' id xs z0 where f' i k x z = k $! f i x z {-# INLINE ifoldr' #-} -- | Fold over the elements of a structure with an index, associating to the left, but /strictly/. -- -- When you don't need access to the index then 'Control.Lens.Fold.foldlOf'' is more flexible in what it accepts. -- -- @ -- 'Control.Lens.Fold.foldlOf'' l ≡ 'ifoldlOf'' l '.' 'const' -- @ ifoldl' :: (i -> b -> a -> b) -> b -> f a -> b ifoldl' f z0 xs = ifoldr f' id xs z0 where f' i x k z = k $! f i z x {-# INLINE ifoldl' #-} -- | Return whether or not any element in a container satisfies a predicate, with access to the index @i@. -- -- When you don't need access to the index then 'any' is more flexible in what it accepts. -- -- @ -- 'any' ≡ 'iany' '.' 'const' -- @ iany :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool iany f = getAny #. ifoldMap (\i -> Any #. f i) {-# INLINE iany #-} -- | Return whether or not all elements in a container satisfy a predicate, with access to the index @i@. -- -- When you don't need access to the index then 'all' is more flexible in what it accepts. -- -- @ -- 'all' ≡ 'iall' '.' 'const' -- @ iall :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool iall f = getAll #. ifoldMap (\i -> All #. f i) {-# INLINE iall #-} -- | Return whether or not none of the elements in a container satisfy a predicate, with access to the index @i@. -- -- When you don't need access to the index then 'none' is more flexible in what it accepts. -- -- @ -- 'none' ≡ 'inone' '.' 'const' -- 'inone' f ≡ 'not' '.' 'iany' f -- @ inone :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool inone f = not . iany f {-# INLINE inone #-} -- | Determines whether no elements of the structure satisfy the predicate. -- -- @ -- 'none' f ≡ 'not' '.' 'any' f -- @ none :: Foldable f => (a -> Bool) -> f a -> Bool none f = not . Data.Foldable.any f {-# INLINE none #-} -- | Traverse elements with access to the index @i@, discarding the results. -- -- When you don't need access to the index then 'traverse_' is more flexible in what it accepts. -- -- @ -- 'traverse_' l = 'itraverse' '.' 'const' -- @ itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f () itraverse_ f = getTraversed #. ifoldMap (\i -> Traversed #. void . f i) {-# INLINE itraverse_ #-} -- | Traverse elements with access to the index @i@, discarding the results (with the arguments flipped). -- -- @ -- 'ifor_' ≡ 'flip' 'itraverse_' -- @ -- -- When you don't need access to the index then 'for_' is more flexible in what it accepts. -- -- @ -- 'for_' a ≡ 'ifor_' a '.' 'const' -- @ ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f () ifor_ = flip itraverse_ {-# INLINE ifor_ #-} -- | Run monadic actions for each target of an 'IndexedFold' or 'Control.Lens.IndexedTraversal.IndexedTraversal' with access to the index, -- discarding the results. -- -- When you don't need access to the index then 'Control.Lens.Fold.mapMOf_' is more flexible in what it accepts. -- -- @ -- 'mapM_' ≡ 'imapM' '.' 'const' -- @ imapM_ :: (FoldableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m () imapM_ f = getSequenced #. ifoldMap (\i -> Sequenced #. liftM skip . f i) {-# INLINE imapM_ #-} -- | Run monadic actions for each target of an 'IndexedFold' or 'Control.Lens.IndexedTraversal.IndexedTraversal' with access to the index, -- discarding the results (with the arguments flipped). -- -- @ -- 'iforM_' ≡ 'flip' 'imapM_' -- @ -- -- When you don't need access to the index then 'Control.Lens.Fold.forMOf_' is more flexible in what it accepts. -- -- @ -- 'Control.Lens.Fold.forMOf_' l a ≡ 'iforMOf' l a '.' 'const' -- @ iforM_ :: (FoldableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m () iforM_ = flip imapM_ {-# INLINE iforM_ #-} -- | Concatenate the results of a function of the elements of an indexed container with access to the index. -- -- When you don't need access to the index then 'concatMap' is more flexible in what it accepts. -- -- @ -- 'concatMap' ≡ 'iconcatMap' '.' 'const' -- 'iconcatMap' ≡ 'ifoldMap' -- @ iconcatMap :: FoldableWithIndex i f => (i -> a -> [b]) -> f a -> [b] iconcatMap = ifoldMap {-# INLINE iconcatMap #-} -- | Searches a container with a predicate that is also supplied the index, returning the left-most element of the structure -- matching the predicate, or 'Nothing' if there is no such element. -- -- When you don't need access to the index then 'find' is more flexible in what it accepts. -- -- @ -- 'find' ≡ 'ifind' '.' 'const' -- @ ifind :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Maybe (i, a) ifind p = ifoldr (\i a y -> if p i a then Just (i, a) else y) Nothing {-# INLINE ifind #-} -- | Monadic fold right over the elements of a structure with an index. -- -- When you don't need access to the index then 'foldrM' is more flexible in what it accepts. -- -- @ -- 'foldrM' ≡ 'ifoldrM' '.' 'const' -- @ ifoldrM :: (FoldableWithIndex i f, Monad m) => (i -> a -> b -> m b) -> b -> f a -> m b ifoldrM f z0 xs = ifoldl f' return xs z0 where f' i k x z = f i x z >>= k {-# INLINE ifoldrM #-} -- | Monadic fold over the elements of a structure with an index, associating to the left. -- -- When you don't need access to the index then 'foldlM' is more flexible in what it accepts. -- -- @ -- 'foldlM' ≡ 'ifoldlM' '.' 'const' -- @ ifoldlM :: (FoldableWithIndex i f, Monad m) => (i -> b -> a -> m b) -> b -> f a -> m b ifoldlM f z0 xs = ifoldr f' return xs z0 where f' i x k z = f i z x >>= k {-# INLINE ifoldlM #-} -- | Extract the key-value pairs from a structure. -- -- When you don't need access to the indices in the result, then 'Data.Foldable.toList' is more flexible in what it accepts. -- -- @ -- 'Data.Foldable.toList' ≡ 'Data.List.map' 'snd' '.' 'itoList' -- @ itoList :: FoldableWithIndex i f => f a -> [(i,a)] itoList = ifoldr (\i c -> ((i,c):)) [] {-# INLINE itoList #-} ------------------------------------------------------------------------------- -- TraversableWithIndex ------------------------------------------------------------------------------- -- | A 'Traversable' with an additional index. -- -- An instance must satisfy a (modified) form of the 'Traversable' laws: -- -- @ -- 'itraverse' ('const' 'Identity') ≡ 'Identity' -- 'fmap' ('itraverse' f) '.' 'itraverse' g ≡ 'Data.Functor.Compose.getCompose' '.' 'itraverse' (\\i -> 'Data.Functor.Compose.Compose' '.' 'fmap' (f i) '.' g i) -- @ class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i t | t -> i where -- | Traverse an indexed container. -- -- @ -- 'itraverse' ≡ 'itraverseOf' 'itraversed' -- @ itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b) #ifndef HLINT default itraverse :: Applicative f => (Int -> a -> f b) -> t a -> f (t b) itraverse = traversed .# Indexed {-# INLINE itraverse #-} #endif -- | The 'IndexedTraversal' of a 'TraversableWithIndex' container. itraversed :: IndexedTraversal i (t a) (t b) a b itraversed = conjoined traverse (itraverse . indexed) {-# INLINE itraversed #-} -- | Traverse with an index (and the arguments flipped). -- -- @ -- 'for' a ≡ 'ifor' a '.' 'const' -- 'ifor' ≡ 'flip' 'itraverse' -- @ ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b) ifor = flip itraverse {-# INLINE ifor #-} -- | Map each element of a structure to a monadic action, -- evaluate these actions from left to right, and collect the results, with access -- the index. -- -- When you don't need access to the index 'mapM' is more liberal in what it can accept. -- -- @ -- 'mapM' ≡ 'imapM' '.' 'const' -- @ imapM :: (TraversableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m (t b) imapM f = unwrapMonad #. itraverse (\i -> WrapMonad #. f i) {-# INLINE imapM #-} -- | Map each element of a structure to a monadic action, -- evaluate these actions from left to right, and collect the results, with access -- its position (and the arguments flipped). -- -- @ -- 'forM' a ≡ 'iforM' a '.' 'const' -- 'iforM' ≡ 'flip' 'imapM' -- @ iforM :: (TraversableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m (t b) iforM = flip imapM {-# INLINE iforM #-} -- | Generalizes 'Data.Traversable.mapAccumR' to add access to the index. -- -- 'imapAccumROf' accumulates state from right to left. -- -- @ -- 'Control.Lens.Traversal.mapAccumR' ≡ 'imapAccumR' '.' 'const' -- @ imapAccumR :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b) imapAccumR f s0 a = swap (Lazy.runState (forwards (itraverse (\i c -> Backwards (Lazy.state (\s -> swap (f i s c)))) a)) s0) {-# INLINE imapAccumR #-} -- | Generalizes 'Data.Traversable.mapAccumL' to add access to the index. -- -- 'imapAccumLOf' accumulates state from left to right. -- -- @ -- 'Control.Lens.Traversal.mapAccumLOf' ≡ 'imapAccumL' '.' 'const' -- @ imapAccumL :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b) imapAccumL f s0 a = swap (Lazy.runState (itraverse (\i c -> Lazy.state (\s -> swap (f i s c))) a) s0) {-# INLINE imapAccumL #-} ------------------------------------------------------------------------------- -- Instances ------------------------------------------------------------------------------- instance FunctorWithIndex i f => FunctorWithIndex i (Backwards f) where imap f = Backwards . imap f . forwards {-# INLINE imap #-} instance FoldableWithIndex i f => FoldableWithIndex i (Backwards f) where ifoldMap f = ifoldMap f . forwards {-# INLINE ifoldMap #-} instance TraversableWithIndex i f => TraversableWithIndex i (Backwards f) where itraverse f = fmap Backwards . itraverse f . forwards {-# INLINE itraverse #-} instance FunctorWithIndex i f => FunctorWithIndex i (Reverse f) where imap f = Reverse . imap f . getReverse {-# INLINE imap #-} instance FoldableWithIndex i f => FoldableWithIndex i (Reverse f) where ifoldMap f = getDual . ifoldMap (\i -> Dual #. f i) . getReverse {-# INLINE ifoldMap #-} instance TraversableWithIndex i f => TraversableWithIndex i (Reverse f) where itraverse f = fmap Reverse . forwards . itraverse (\i -> Backwards . f i) . getReverse {-# INLINE itraverse #-} instance FunctorWithIndex () Identity where imap f (Identity a) = Identity (f () a) {-# INLINE imap #-} instance FoldableWithIndex () Identity where ifoldMap f (Identity a) = f () a {-# INLINE ifoldMap #-} instance TraversableWithIndex () Identity where itraverse f (Identity a) = Identity <$> f () a {-# INLINE itraverse #-} instance FunctorWithIndex k ((,) k) where imap f (k,a) = (k, f k a) {-# INLINE imap #-} instance FoldableWithIndex k ((,) k) where ifoldMap = uncurry {-# INLINE ifoldMap #-} instance TraversableWithIndex k ((,) k) where itraverse f (k, a) = (,) k <$> f k a {-# INLINE itraverse #-} -- | The position in the list is available as the index. instance FunctorWithIndex Int [] instance FoldableWithIndex Int [] instance TraversableWithIndex Int [] where itraversed = traversed {-# INLINE itraversed #-} instance FunctorWithIndex Int NonEmpty instance FoldableWithIndex Int NonEmpty instance TraversableWithIndex Int NonEmpty where itraverse = itraverseOf traversed {-# INLINE itraverse #-} instance FunctorWithIndex () Maybe where imap f = fmap (f ()) {-# INLINE imap #-} instance FoldableWithIndex () Maybe where ifoldMap f = foldMap (f ()) {-# INLINE ifoldMap #-} instance TraversableWithIndex () Maybe where itraverse f = traverse (f ()) {-# INLINE itraverse #-} -- | The position in the 'Seq' is available as the index. instance FunctorWithIndex Int Seq instance FoldableWithIndex Int Seq instance TraversableWithIndex Int Seq where itraversed = traversed {-# INLINE itraversed #-} instance FunctorWithIndex Int Vector where imap = V.imap {-# INLINE imap #-} instance FoldableWithIndex Int Vector where ifoldr = V.ifoldr {-# INLINE ifoldr #-} ifoldl = V.ifoldl . flip {-# INLINE ifoldl #-} ifoldr' = V.ifoldr' {-# INLINE ifoldr' #-} ifoldl' = V.ifoldl' . flip {-# INLINE ifoldl' #-} instance TraversableWithIndex Int Vector where itraversed = traversed {-# INLINE itraversed #-} instance FunctorWithIndex Int IntMap instance FoldableWithIndex Int IntMap instance TraversableWithIndex Int IntMap where #if MIN_VERSION_containers(0,5,0) itraverse = IntMap.traverseWithKey #else itraverse f = sequenceA . IntMap.mapWithKey f #endif {-# INLINE [0] itraverse #-} {-# RULES "itraversed -> mapIntMap" itraversed = sets IntMap.map :: ASetter (IntMap a) (IntMap b) a b; "itraversed -> imapIntMap" itraversed = isets IntMap.mapWithKey :: AnIndexedSetter Int (IntMap a) (IntMap b) a b; "itraversed -> foldrIntMap" itraversed = foldring IntMap.foldr :: Getting (Endo r) (IntMap a) a; "itraversed -> ifoldrIntMap" itraversed = ifoldring IntMap.foldrWithKey :: IndexedGetting Int (Endo r) (IntMap a) a; #-} instance FunctorWithIndex k (Map k) instance FoldableWithIndex k (Map k) instance TraversableWithIndex k (Map k) where #if MIN_VERSION_containers(0,5,0) itraverse = Map.traverseWithKey #else itraverse f = sequenceA . Map.mapWithKey f #endif {-# INLINE [0] itraverse #-} {-# RULES "itraversed -> mapMap" itraversed = sets Map.map :: ASetter (Map k a) (Map k b) a b; "itraversed -> imapMap" itraversed = isets Map.mapWithKey :: AnIndexedSetter k (Map k a) (Map k b) a b; "itraversed -> foldrMap" itraversed = foldring Map.foldr :: Getting (Endo r) (Map k a) a; "itraversed -> ifoldrMap" itraversed = ifoldring Map.foldrWithKey :: IndexedGetting k (Endo r) (Map k a) a; #-} instance (Eq k, Hashable k) => FunctorWithIndex k (HashMap k) instance (Eq k, Hashable k) => FoldableWithIndex k (HashMap k) instance (Eq k, Hashable k) => TraversableWithIndex k (HashMap k) where itraverse = HashMap.traverseWithKey {-# INLINE [0] itraverse #-} {-# RULES "itraversed -> mapHashMap" itraversed = sets HashMap.map :: ASetter (HashMap k a) (HashMap k b) a b; "itraversed -> imapHashMap" itraversed = isets HashMap.mapWithKey :: AnIndexedSetter k (HashMap k a) (HashMap k b) a b; "itraversed -> foldrHashMap" itraversed = foldring HashMap.foldr :: Getting (Endo r) (HashMap k a) a; "itraversed -> ifoldrHashMap" itraversed = ifoldring HashMap.foldrWithKey :: IndexedGetting k (Endo r) (HashMap k a) a; #-} instance FunctorWithIndex r ((->) r) where imap f g x = f x (g x) {-# INLINE imap #-} instance FunctorWithIndex i (Level i) where imap f = go where go (Two n l r) = Two n (go l) (go r) go (One i a) = One i (f i a) go Zero = Zero {-# INLINE imap #-} instance FoldableWithIndex i (Level i) where ifoldMap f = go where go (Two _ l r) = go l `mappend` go r go (One i a) = f i a go Zero = mempty {-# INLINE ifoldMap #-} instance TraversableWithIndex i (Level i) where itraverse f = go where go (Two n l r) = Two n <$> go l <*> go r go (One i a) = One i <$> f i a go Zero = pure Zero {-# INLINE itraverse #-} instance FunctorWithIndex i (Magma i t b) where imap f (MagmaAp x y) = MagmaAp (imap f x) (imap f y) imap _ (MagmaPure x) = MagmaPure x imap f (MagmaFmap xy x) = MagmaFmap xy (imap f x) imap f (Magma i a) = Magma i (f i a) {-# INLINE imap #-} instance FoldableWithIndex i (Magma i t b) where ifoldMap f (MagmaAp x y) = ifoldMap f x `mappend` ifoldMap f y ifoldMap _ MagmaPure{} = mempty ifoldMap f (MagmaFmap _ x) = ifoldMap f x ifoldMap f (Magma i a) = f i a {-# INLINE ifoldMap #-} instance TraversableWithIndex i (Magma i t b) where itraverse f (MagmaAp x y) = MagmaAp <$> itraverse f x <*> itraverse f y itraverse _ (MagmaPure x) = pure (MagmaPure x) itraverse f (MagmaFmap xy x) = MagmaFmap xy <$> itraverse f x itraverse f (Magma i a) = Magma i <$> f i a {-# INLINE itraverse #-} instance FunctorWithIndex i f => FunctorWithIndex [i] (Free f) where imap f (Pure a) = Pure $ f [] a imap f (Free s) = Free $ imap (\i -> imap (f . (:) i)) s {-# INLINE imap #-} instance FoldableWithIndex i f => FoldableWithIndex [i] (Free f) where ifoldMap f (Pure a) = f [] a ifoldMap f (Free s) = ifoldMap (\i -> ifoldMap (f . (:) i)) s {-# INLINE ifoldMap #-} instance TraversableWithIndex i f => TraversableWithIndex [i] (Free f) where itraverse f (Pure a) = Pure <$> f [] a itraverse f (Free s) = Free <$> itraverse (\i -> itraverse (f . (:) i)) s {-# INLINE itraverse #-} instance Ix i => FunctorWithIndex i (Array i) where imap f arr = Array.listArray (Array.bounds arr) . fmap (uncurry f) $ Array.assocs arr {-# INLINE imap #-} instance Ix i => FoldableWithIndex i (Array i) where ifoldMap f = foldMap (uncurry f) . Array.assocs {-# INLINE ifoldMap #-} instance Ix i => TraversableWithIndex i (Array i) where itraverse f arr = Array.listArray (Array.bounds arr) <$> traverse (uncurry f) (Array.assocs arr) {-# INLINE itraverse #-} instance FunctorWithIndex i f => FunctorWithIndex [i] (Cofree f) where imap f (a :< as) = f [] a :< imap (\i -> imap (f . (:) i)) as {-# INLINE imap #-} instance FoldableWithIndex i f => FoldableWithIndex [i] (Cofree f) where ifoldMap f (a :< as) = f [] a `mappend` ifoldMap (\i -> ifoldMap (f . (:) i)) as {-# INLINE ifoldMap #-} instance TraversableWithIndex i f => TraversableWithIndex [i] (Cofree f) where itraverse f (a :< as) = (:<) <$> f [] a <*> itraverse (\i -> itraverse (f . (:) i)) as {-# INLINE itraverse #-} instance (FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (i, j) (Compose f g) where imap f (Compose fg) = Compose $ imap (\k -> imap (f . (,) k)) fg {-# INLINE imap #-} instance (FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (Compose f g) where ifoldMap f (Compose fg) = ifoldMap (\k -> ifoldMap (f . (,) k)) fg {-# INLINE ifoldMap #-} instance (TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (i, j) (Compose f g) where itraverse f (Compose fg) = Compose <$> itraverse (\k -> itraverse (f . (,) k)) fg {-# INLINE itraverse #-} instance FunctorWithIndex i m => FunctorWithIndex i (IdentityT m) where imap f (IdentityT m) = IdentityT $ imap f m {-# INLINE imap #-} instance FoldableWithIndex i m => FoldableWithIndex i (IdentityT m) where ifoldMap f (IdentityT m) = ifoldMap f m {-# INLINE ifoldMap #-} instance TraversableWithIndex i m => TraversableWithIndex i (IdentityT m) where itraverse f (IdentityT m) = IdentityT <$> itraverse f m {-# INLINE itraverse #-} instance (FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Product f g) where imap f (Pair a b) = Pair (imap (f . Left) a) (imap (f . Right) b) {-# INLINE imap #-} instance (FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Product f g) where ifoldMap f (Pair a b) = ifoldMap (f . Left) a `mappend` ifoldMap (f . Right) b {-# INLINE ifoldMap #-} instance (TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (Product f g) where itraverse f (Pair a b) = Pair <$> itraverse (f . Left) a <*> itraverse (f . Right) b {-# INLINE itraverse #-} instance FunctorWithIndex i m => FunctorWithIndex (e, i) (ReaderT e m) where imap f (ReaderT m) = ReaderT $ \k -> imap (f . (,) k) (m k) {-# INLINE imap #-} instance FunctorWithIndex i w => FunctorWithIndex (s, i) (TracedT s w) where imap f (TracedT w) = TracedT $ imap (\k' g k -> f (k, k') (g k)) w {-# INLINE imap #-} instance FunctorWithIndex [Int] Tree where imap f (Node a as) = Node (f [] a) $ imap (\i -> imap (f . (:) i)) as {-# INLINE imap #-} instance FoldableWithIndex [Int] Tree where ifoldMap f (Node a as) = f [] a `mappend` ifoldMap (\i -> ifoldMap (f . (:) i)) as {-# INLINE ifoldMap #-} instance TraversableWithIndex [Int] Tree where itraverse f (Node a as) = Node <$> f [] a <*> itraverse (\i -> itraverse (f . (:) i)) as {-# INLINE itraverse #-} ------------------------------------------------------------------------------- -- Misc. ------------------------------------------------------------------------------- skip :: a -> () skip _ = () {-# INLINE skip #-} ------------------------------------------------------------------------------- -- Indexed Folds with Reified Monoid ------------------------------------------------------------------------------- ifoldMapBy :: FoldableWithIndex i t => (r -> r -> r) -> r -> (i -> a -> r) -> t a -> r ifoldMapBy f z g = reifyMonoid f z (ifoldMap (\i a -> ReflectedMonoid (g i a))) ifoldMapByOf :: IndexedFold i t a -> (r -> r -> r) -> r -> (i -> a -> r) -> t -> r ifoldMapByOf l f z g = reifyMonoid f z (ifoldMapOf l (\i a -> ReflectedMonoid (g i a))) itraverseBy :: TraversableWithIndex i t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> t a -> f (t b) itraverseBy pur app f = reifyApplicative pur app (itraverse (\i a -> ReflectedApplicative (f i a))) itraverseByOf :: IndexedTraversal i s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> s -> f t itraverseByOf l pur app f = reifyApplicative pur app (itraverseOf l (\i a -> ReflectedApplicative (f i a)))