{-# LANGUAGE CPP #-} {-# LANGUAGE Rank2Types #-} #ifdef TRUSTWORTHY {-# LANGUAGE Trustworthy #-} #endif ------------------------------------------------------------------------------- -- | -- Module : Control.Lens.Prism -- Copyright : (C) 2012-14 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : non-portable -- ------------------------------------------------------------------------------- module Control.Lens.Prism ( -- * Prisms Prism, Prism' , APrism, APrism' -- * Constructing Prisms , prism , prism' -- * Consuming Prisms , clonePrism , outside , aside , without , below , isn't -- * Common Prisms , _Left , _Right , _Just , _Nothing , _Void , _Show , only , nearly -- * Prismatic profunctors , Choice(..) ) where import Control.Applicative import Control.Lens.Internal.Prism import Control.Lens.Lens import Control.Lens.Review import Control.Lens.Type import Control.Monad import Data.Functor.Identity import Data.Profunctor import Data.Profunctor.Rep import Data.Traversable import Data.Void #ifndef SAFE import Unsafe.Coerce #else import Data.Profunctor.Unsafe #endif {-# ANN module "HLint: ignore Use camelCase" #-} -- $setup -- >>> :set -XNoOverloadedStrings -- >>> import Control.Lens -- >>> import Numeric.Natural -- >>> import Debug.SimpleReflect.Expr -- >>> import Debug.SimpleReflect.Vars as Vars hiding (f,g) -- >>> let isLeft (Left _) = True; isLeft _ = False -- >>> let isRight (Right _) = True; isRight _ = False -- >>> let f :: Expr -> Expr; f = Debug.SimpleReflect.Vars.f -- >>> let g :: Expr -> Expr; g = Debug.SimpleReflect.Vars.g ------------------------------------------------------------------------------ -- Prism Internals ------------------------------------------------------------------------------ -- | If you see this in a signature for a function, the function is expecting a 'Prism'. type APrism s t a b = Market a b a (Identity b) -> Market a b s (Identity t) -- | @ -- type APrism' = 'Simple' 'APrism' -- @ type APrism' s a = APrism s s a a -- | Convert 'APrism' to the pair of functions that characterize it. runPrism :: APrism s t a b -> Market a b s t #ifdef SAFE runPrism k = case k (Market Identity Right) of Market bt seta -> Market (runIdentity #. bt) (either (Left . runIdentity) Right . seta) #else runPrism k = unsafeCoerce (k (Market Identity Right)) #endif {-# INLINE runPrism #-} -- | Clone a 'Prism' so that you can reuse the same monomorphically typed 'Prism' for different purposes. -- -- See 'Control.Lens.Lens.cloneLens' and 'Control.Lens.Traversal.cloneTraversal' for examples of why you might want to do this. clonePrism :: APrism s t a b -> Prism s t a b clonePrism k = case runPrism k of Market bt seta -> prism bt seta {-# INLINE clonePrism #-} ------------------------------------------------------------------------------ -- Prism Combinators ------------------------------------------------------------------------------ -- | Build a 'Control.Lens.Prism.Prism'. -- -- @'Either' t a@ is used instead of @'Maybe' a@ to permit the types of @s@ and @t@ to differ. -- prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b prism bt seta = dimap seta (either pure (fmap bt)) . right' {-# INLINE prism #-} -- | This is usually used to build a 'Prism'', when you have to use an operation like -- 'Data.Typeable.cast' which already returns a 'Maybe'. prism' :: (b -> s) -> (s -> Maybe a) -> Prism s s a b prism' bs sma = prism bs (\s -> maybe (Left s) Right (sma s)) {-# INLINE prism' #-} -- | Use a 'Prism' as a kind of first-class pattern. -- -- @'outside' :: 'Prism' s t a b -> 'Lens' (t -> r) (s -> r) (b -> r) (a -> r)@ -- TODO: can we make this work with merely Strong? outside :: Representable p => APrism s t a b -> Lens (p t r) (p s r) (p b r) (p a r) outside k = case runPrism k of Market bt seta -> \f ft -> f (lmap bt ft) <&> \fa -> tabulate $ either (rep ft) (rep fa) . seta {-# INLINE outside #-} -- | Given a pair of prisms, project sums. -- -- Viewing a 'Prism' as a co-'Lens', this combinator can be seen to be dual to 'Control.Lens.Lens.alongside'. without :: APrism s t a b -> APrism u v c d -> Prism (Either s u) (Either t v) (Either a c) (Either b d) without k = case runPrism k of Market bt seta -> \ k' -> case runPrism k' of Market dv uevc -> prism (bimap bt dv) $ \su -> case su of Left s -> bimap Left Left (seta s) Right u -> bimap Right Right (uevc u) {-# INLINE without #-} -- | Use a 'Prism' to work over part of a structure. -- aside :: APrism s t a b -> Prism (e, s) (e, t) (e, a) (e, b) aside k = case runPrism k of Market bt seta -> prism (fmap bt) $ \(e,s) -> case seta s of Left t -> Left (e,t) Right a -> Right (e,a) {-# INLINE aside #-} -- | 'lift' a 'Prism' through a 'Traversable' functor, giving a Prism that matches only if all the elements of the container match the 'Prism'. below :: Traversable f => APrism' s a -> Prism' (f s) (f a) below k = case runPrism k of Market bt seta -> prism (fmap bt) $ \s -> case traverse seta s of Left _ -> Left s Right t -> Right t {-# INLINE below #-} -- | Check to see if this 'Prism' doesn't match. -- -- >>> isn't _Left (Right 12) -- True -- -- >>> isn't _Left (Left 12) -- False -- -- >>> isn't _Empty [] -- False isn't :: APrism s t a b -> s -> Bool isn't k s = case runPrism k of Market _ seta -> case seta s of Left _ -> True Right _ -> False {-# INLINE isn't #-} ------------------------------------------------------------------------------ -- Common Prisms ------------------------------------------------------------------------------ -- | This 'Prism' provides a 'Traversal' for tweaking the 'Left' half of an 'Either': -- -- >>> over _Left (+1) (Left 2) -- Left 3 -- -- >>> over _Left (+1) (Right 2) -- Right 2 -- -- >>> Right 42 ^._Left :: String -- "" -- -- >>> Left "hello" ^._Left -- "hello" -- -- It also can be turned around to obtain the embedding into the 'Left' half of an 'Either': -- -- >>> _Left # 5 -- Left 5 -- -- >>> 5^.re _Left -- Left 5 _Left :: Prism (Either a c) (Either b c) a b _Left = prism Left $ either Right (Left . Right) {-# INLINE _Left #-} -- | This 'Prism' provides a 'Traversal' for tweaking the 'Right' half of an 'Either': -- -- >>> over _Right (+1) (Left 2) -- Left 2 -- -- >>> over _Right (+1) (Right 2) -- Right 3 -- -- >>> Right "hello" ^._Right -- "hello" -- -- >>> Left "hello" ^._Right :: [Double] -- [] -- -- It also can be turned around to obtain the embedding into the 'Right' half of an 'Either': -- -- >>> _Right # 5 -- Right 5 -- -- >>> 5^.re _Right -- Right 5 _Right :: Prism (Either c a) (Either c b) a b _Right = prism Right $ either (Left . Left) Right {-# INLINE _Right #-} -- | This 'Prism' provides a 'Traversal' for tweaking the target of the value of 'Just' in a 'Maybe'. -- -- >>> over _Just (+1) (Just 2) -- Just 3 -- -- Unlike 'Data.Traversable.traverse' this is a 'Prism', and so you can use it to inject as well: -- -- >>> _Just # 5 -- Just 5 -- -- >>> 5^.re _Just -- Just 5 -- -- Interestingly, -- -- @ -- m '^?' '_Just' ≡ m -- @ -- -- >>> Just x ^? _Just -- Just x -- -- >>> Nothing ^? _Just -- Nothing _Just :: Prism (Maybe a) (Maybe b) a b _Just = prism Just $ maybe (Left Nothing) Right {-# INLINE _Just #-} -- | This 'Prism' provides the 'Traversal' of a 'Nothing' in a 'Maybe'. -- -- >>> Nothing ^? _Nothing -- Just () -- -- >>> Just () ^? _Nothing -- Nothing -- -- But you can turn it around and use it to construct 'Nothing' as well: -- -- >>> _Nothing # () -- Nothing _Nothing :: Prism' (Maybe a) () _Nothing = prism' (const Nothing) $ maybe (Just ()) (const Nothing) {-# INLINE _Nothing #-} -- | 'Void' is a logically uninhabited data type. -- -- This is a 'Prism' that will always fail to match. _Void :: Prism s s a Void _Void = prism absurd Left {-# INLINE _Void #-} -- | This 'Prism' compares for exact equality with a given value. -- -- >>> only 4 # () -- 4 -- -- >>> 5 ^? only 4 -- Nothing only :: Eq a => a -> Prism' a () only a = prism' (\() -> a) $ guard . (a ==) {-# INLINE only #-} -- | This 'Prism' compares for approximate equality with a given value and a predicate for testing. -- -- To comply with the 'Prism' laws the arguments you supply to @nearly a p@ are somewhat constrained. -- -- We assume @p x@ holds iff @x ≡ a@. Under that assumption then this is a valid 'Prism'. -- -- This is useful when working with a type where you can test equality for only a subset of its -- values, and the prism selects such a value. nearly :: a -> (a -> Bool) -> Prism' a () nearly a p = prism' (\() -> a) $ guard . p {-# INLINE nearly #-} -- | This is an improper prism for text formatting based on 'Read' and 'Show'. -- -- This 'Prism' is \"improper\" in the sense that it normalizes the text formatting, but round tripping -- is idempotent given sane 'Read'/'Show' instances. -- -- >>> _Show # 2 -- "2" -- -- >>> "EQ" ^? _Show :: Maybe Ordering -- Just EQ -- -- @ -- '_Show' ≡ 'prism'' 'show' 'readMaybe' -- @ _Show :: (Read a, Show a) => Prism' String a _Show = prism show $ \s -> case reads s of [(a,"")] -> Right a _ -> Left s {-# INLINE _Show #-}