{-# LANGUAGE CPP, DataKinds, TypeFamilies, TypeOperators, UndecidableInstances #-} #if __GLASGOW_HASKELL__ < 707 #error This code requires GHC 7.7+ #endif #include "MachDeps.h" #include "HsBaseConfig.h" -- | -- Module: Data.IntCast -- Copyright: © 2014 Herbert Valerio Riedel -- License: BSD-style (see the LICENSE file) -- -- Maintainer: Herbert Valerio Riedel <hvr@gnu.org> -- Stability: experimental -- Portability: GHC ≥ 7.8 -- -- This module provides for statically or dynamically checked -- conversions between 'Integral' types. module Data.IntCast ( -- * Conversion functions -- ** statically checked intCast , intCastIso , intCastEq -- ** dynamically checked , intCastMaybe -- * Registering new integer types -- | -- * For 'intCastMaybe' you need to provide type-class instances of 'Bits' -- (and 'Integral'). -- -- * For 'intCast', 'intCastIso', and 'intCastEq' simply -- declare instances for the 'IntBaseType' type-family (as well -- as type-class instances of 'Integral') as described below. , IntBaseType , IntBaseTypeK(..) -- * Type-level predicates -- | The following type-level predicates are used by 'intCast', -- 'intCastIso', and 'intCastEq' respectively. , IsIntSubType , IsIntBaseSubType , IsIntTypeIso , IsIntBaseTypeIso , IsIntTypeEq , IsIntBaseTypeEq ) where -- Haskell 2010+ import Data.Int import Data.Word import Foreign.C.Types -- non-Haskell 2010 import GHC.TypeLits import Data.Bits import Data.Type.Equality -- | (Kind) Meta-information about integral types. -- -- If also a 'Bits' instance is defined, the type-level information -- provided by 'IntBaseType' ought to match the meta-information that -- is conveyed by the 'Bits' class' 'isSigned' and 'bitSizeMaybe' -- methods. data IntBaseTypeK -- | fixed-width /n/-bit integers with value range [-2ⁿ⁻¹, 2ⁿ⁻¹-1]. = FixedIntTag Nat -- | fixed-width /n/-bit integers with value range [0, 2ⁿ-1]. | FixedWordTag Nat -- | integers with value range ]-∞,+∞[. | BigIntTag -- | naturals with value range [0,+∞[. | BigWordTag -- | The (open) type family 'IntBaseType' encodes type-level -- information about the value range of an integral type. -- -- This module also provides type family instances for the standard -- Haskell 2010 integral types (including "Foreign.C.Types"). -- -- Here's a simple example for registering a custom type with the -- "Data.IntCast" facilities: -- -- @ -- /-- user-implemented unsigned 4-bit integer/ -- data Nibble = … -- -- /-- declare meta-information/ -- type instance 'IntBaseType' MyWord7 = 'FixedIntTag' 4 -- -- /-- user-implemented signed 7-bit integer/ -- data MyInt7 = … -- -- /-- declare meta-information/ -- type instance 'IntBaseType' MyWord7 = 'FixedIntTag' 7 -- @ -- -- The type-level predicate 'IsIntSubType' provides a partial -- ordering based on the types above. See also 'intCast'. type family IntBaseType a :: IntBaseTypeK type instance IntBaseType Integer = BigIntTag -- Haskell2010 Basic fixed-width Integer Types type instance IntBaseType Int8 = FixedIntTag 8 type instance IntBaseType Int16 = FixedIntTag 16 type instance IntBaseType Int32 = FixedIntTag 32 type instance IntBaseType Int64 = FixedIntTag 64 type instance IntBaseType Word8 = FixedWordTag 8 type instance IntBaseType Word16 = FixedWordTag 16 type instance IntBaseType Word32 = FixedWordTag 32 type instance IntBaseType Word64 = FixedWordTag 64 #if defined(WORD_SIZE_IN_BITS) type instance IntBaseType Int = FixedIntTag WORD_SIZE_IN_BITS type instance IntBaseType Word = FixedWordTag WORD_SIZE_IN_BITS #else #error Cannot determine bit-size of 'Int'/'Word' type #endif -- Haskell2010 FFI Integer Types type instance IntBaseType CChar = IntBaseType HTYPE_CHAR type instance IntBaseType CInt = IntBaseType HTYPE_INT type instance IntBaseType CIntMax = IntBaseType HTYPE_INTMAX_T type instance IntBaseType CIntPtr = IntBaseType HTYPE_INTPTR_T type instance IntBaseType CLLong = IntBaseType HTYPE_LONG_LONG type instance IntBaseType CLong = IntBaseType HTYPE_LONG type instance IntBaseType CPtrdiff = IntBaseType HTYPE_PTRDIFF_T type instance IntBaseType CSChar = IntBaseType HTYPE_SIGNED_CHAR type instance IntBaseType CShort = IntBaseType HTYPE_SHORT type instance IntBaseType CSigAtomic = IntBaseType HTYPE_SIG_ATOMIC_T type instance IntBaseType CSize = IntBaseType HTYPE_SIZE_T type instance IntBaseType CUChar = IntBaseType HTYPE_UNSIGNED_CHAR type instance IntBaseType CUInt = IntBaseType HTYPE_UNSIGNED_INT type instance IntBaseType CUIntMax = IntBaseType HTYPE_UINTMAX_T type instance IntBaseType CUIntPtr = IntBaseType HTYPE_UINTPTR_T type instance IntBaseType CULLong = IntBaseType HTYPE_UNSIGNED_LONG_LONG type instance IntBaseType CULong = IntBaseType HTYPE_UNSIGNED_LONG type instance IntBaseType CUShort = IntBaseType HTYPE_UNSIGNED_SHORT -- Internal class providing the partial order of (improper) subtype-relations type family IsIntBaseSubType a b :: Bool where -- this relation is reflexive IsIntBaseSubType a a = True -- Every integer is a subset of 'Integer' IsIntBaseSubType a BigIntTag = True -- Even though Haskell2010 doesn't provide naturals, we can use the -- tag 'Nat' to denote such entities IsIntBaseSubType (FixedWordTag a) BigWordTag = True -- sub-type relations between fixed-with types IsIntBaseSubType (FixedIntTag a) (FixedIntTag b) = a <=? b IsIntBaseSubType (FixedWordTag a) (FixedWordTag b) = a <=? b IsIntBaseSubType (FixedWordTag a) (FixedIntTag b) = a+1 <=? b -- everything else is not a sub-type IsIntBaseSubType a b = False type IsIntSubType a b = IsIntBaseSubType (IntBaseType a) (IntBaseType b) -- Same bit-size predicate type family IsIntBaseTypeIso a b :: Bool where IsIntBaseTypeIso a a = True IsIntBaseTypeIso (FixedIntTag n) (FixedWordTag n) = True IsIntBaseTypeIso (FixedWordTag n) (FixedIntTag n) = True IsIntBaseTypeIso a b = False type IsIntTypeIso a b = IsIntBaseTypeIso (IntBaseType a) (IntBaseType b) type family IsIntBaseTypeEq (a :: IntBaseTypeK) (b :: IntBaseTypeK) :: Bool where IsIntBaseTypeEq a a = True IsIntBaseTypeEq a b = False type IsIntTypeEq a b = IsIntBaseTypeEq (IntBaseType a) (IntBaseType b) type instance a == b = IsIntBaseTypeEq a b -- | Statically checked integer conversion which satisfies the property -- -- * @'toInteger' ≡ 'toInteger' . intCast@ -- -- Note: This is just a type-restricted alias of 'fromIntegral' and -- should therefore lead to the same compiled code as if -- 'fromIntegral' had been used instead of 'intCast'. intCast :: (Integral a, Integral b, IsIntSubType a b ~ True) => a -> b intCast = fromIntegral {-# INLINE intCast #-} -- | Statically checked integer conversion which satisfies the properties -- -- * @∀β . 'intCastIso' ('intCastIso' a ∷ β) == a@ -- -- * @'toInteger' ('intCastIso' a) == 'toInteger' b (__if__ 'toInteger' a == 'toInteger' b)@ -- -- Note: This is just a type-restricted alias of 'fromIntegral' and -- should therefore lead to the same compiled code as if -- 'fromIntegral' had been used instead of 'intCast'. intCastIso :: (Integral a, Integral b, IsIntTypeIso a b ~ True) => a -> b intCastIso = fromIntegral {-# INLINE intCastIso #-} -- | Version of 'intCast' restricted to casts between types with same value domain. intCastEq :: (Integral a, Integral b, IsIntTypeEq a b ~ True) => a -> b intCastEq = fromIntegral {-# INLINE intCastEq #-} ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- -- dynamically checked conversion -- | 'Bits' class based value-level predicate with same semantics as 'IsIntSubType' isBitSubType :: (Bits a, Bits b) => a -> b -> Bool isBitSubType _x _y -- reflexive | xWidth == yWidth, xSigned == ySigned = True -- Every integer is a subset of 'Integer' | ySigned, Nothing == yWidth = True | not xSigned, not ySigned, Nothing == yWidth = True -- sub-type relations between fixed-with types | xSigned == ySigned, Just xW <- xWidth, Just yW <- yWidth = xW <= yW | not xSigned, ySigned, Just xW <- xWidth, Just yW <- yWidth = xW < yW | otherwise = False where xWidth = bitSizeMaybe _x xSigned = isSigned _x yWidth = bitSizeMaybe _y ySigned = isSigned _y {-# INLINE isBitSubType #-} -- | Run-time-checked integer conversion -- -- This is an optimized version of the following generic code below -- -- > intCastMaybeRef :: (Integral a, Integral b) => a -> Maybe b -- > intCastMaybeRef x -- > | toInteger x == toInteger y = Just y -- > | otherwise = Nothing -- > where -- > y = fromIntegral x -- -- The code above is rather inefficient as it needs to go via the -- 'Integer' type. The function 'intCastMaybe', however, is marked @INLINEABLE@ and -- if both integral types are statically known, GHC will be able -- optimize the code signficantly (for @-O1@ and better). -- -- For instance (as of GHC 7.8.1) the following definitions -- -- > w16_to_i32 = intCastMaybe :: Word16 -> Maybe Int32 -- > -- > i16_to_w16 = intCastMaybe :: Int16 -> Maybe Word16 -- -- are translated into the following (simplified) /GHC Core/ language -- -- > w16_to_i32 = \x -> Just (case x of _ { W16# x# -> I32# (word2Int# x#) }) -- > -- > i16_to_w16 = \x -> case eta of _ -- > { I16# b1 -> case tagToEnum# (<=# 0 b1) of _ -- > { False -> Nothing -- > ; True -> Just (W16# (narrow16Word# (int2Word# b1))) -- > } -- > } intCastMaybe :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b -- the code below relies on GHC optimizing away statically decidable branches intCastMaybe x | maybe True (<= x) yMinBound , maybe True (x <=) yMaxBound = Just y | otherwise = Nothing where y = fromIntegral x xWidth = bitSizeMaybe x yWidth = bitSizeMaybe y yMinBound | isBitSubType x y = Nothing | isSigned x, not (isSigned y) = Just 0 | isSigned x, isSigned y, Just yW <- yWidth = Just (negate $ bit (yW-1)) -- N.B. assumes sub-type | otherwise = Nothing yMaxBound | isBitSubType x y = Nothing | isSigned x, not (isSigned y), Just xW <- xWidth, Just yW <- yWidth , xW <= yW+1 = Nothing -- max-bound beyond a's domain | Just yW <- yWidth = if isSigned y then Just (bit (yW-1)-1) else Just (bit yW-1) | otherwise = Nothing {-# INLINEABLE intCastMaybe #-}