module Idris.Core.Unify(match_unify, unify, Fails, FailContext(..), FailAt(..),
unrecoverable) where
import Idris.Core.TT
import Idris.Core.Evaluate
import Control.Monad
import Control.Monad.State.Strict
import Data.List
import Debug.Trace
data FailAt = Match | Unify
deriving (Show, Eq)
data FailContext = FailContext { fail_sourceloc :: FC,
fail_fn :: Name,
fail_param :: Name
}
deriving (Eq, Show)
type Injs = [(TT Name, TT Name, TT Name)]
type Fails = [(TT Name, TT Name,
Bool,
Env, Err, [FailContext], FailAt)]
unrecoverable :: Fails -> Bool
unrecoverable = any bad
where bad (_,_,_,_, err, _, _) = unrec err
unrec (CantUnify r _ _ _ _ _) = not r
unrec (At _ e) = unrec e
unrec (Elaborating _ _ e) = unrec e
unrec (ElaboratingArg _ _ _ e) = unrec e
unrec _ = False
data UInfo = UI Int Fails
deriving Show
data UResult a = UOK a
| UPartOK a
| UFail Err
cantUnify :: [FailContext] -> Bool -> (t, Maybe Provenance) -> (t, Maybe Provenance) -> (Err' t) -> [(Name, t)] -> Int -> Err' t
cantUnify [] r t1 t2 e ctxt i = CantUnify r t1 t2 e ctxt i
cantUnify (FailContext fc f x : prev) r t1 t2 e ctxt i =
At fc (ElaboratingArg f x
(map (\(FailContext _ f' x') -> (f', x')) prev)
(CantUnify r t1 t2 e ctxt i))
match_unify :: Context -> Env ->
(TT Name, Maybe Provenance) ->
(TT Name, Maybe Provenance) -> [Name] -> [Name] -> [FailContext] ->
TC [(Name, TT Name)]
match_unify ctxt env (topx, xfrom) (topy, yfrom) inj holes from =
case runStateT (un [] (renameBindersTm env topx)
(renameBindersTm env topy)) (UI 0 []) of
OK (v, UI _ []) ->
do v' <- trimSolutions (topx, xfrom) (topy, yfrom) from env v
return (map (renameBinders env) v')
res ->
let topxn = renameBindersTm env (normalise ctxt env topx)
topyn = renameBindersTm env (normalise ctxt env topy) in
case runStateT (un [] topxn topyn)
(UI 0 []) of
OK (v, UI _ fails) ->
do v' <- trimSolutions (topx, xfrom) (topy, yfrom) from env v
return (map (renameBinders env) v')
Error e ->
case runStateT (un [] topxn topy)
(UI 0 []) of
OK (v, UI _ fails) ->
do v' <- trimSolutions (topx, xfrom) (topy, yfrom) from env v
return (map (renameBinders env) v')
_ -> tfail e
where
un :: [((Name, Name), TT Name)] -> TT Name -> TT Name ->
StateT UInfo
TC [(Name, TT Name)]
un names x tm@(App _ (P _ f (Bind fn (Pi _ t _) sc)) a)
| (P (TCon _ _) _ _, _) <- unApply x,
holeIn env f || f `elem` holes
= let n' = uniqueName (sMN 0 "mv") (map fst env) in
checkCycle names (f, Bind n' (Lam t) x)
un names tm@(App _ (P _ f (Bind fn (Pi _ t _) sc)) a) x
| (P (TCon _ _) _ _, _) <- unApply x,
holeIn env f || f `elem` holes
= let n' = uniqueName fn (map fst env) in
checkCycle names (f, Bind n' (Lam t) x)
un names x tm@(App _ (P _ f (Bind fn (Pi _ t _) sc)) a)
| (P (DCon _ _ _) _ _, _) <- unApply x,
holeIn env f || f `elem` holes
= let n' = uniqueName (sMN 0 "mv") (map fst env) in
checkCycle names (f, Bind n' (Lam t) x)
un names tm@(App _ (P _ f (Bind fn (Pi _ t _) sc)) a) x
| (P (DCon _ _ _) _ _, _) <- unApply x,
holeIn env f || f `elem` holes
= let n' = uniqueName fn (map fst env) in
checkCycle names (f, Bind n' (Lam t) x)
un names tx@(P _ x _) tm
| tx /= tm && holeIn env x || x `elem` holes
= do sc 1; checkCycle names (x, tm)
un names tm ty@(P _ y _)
| ty /= tm && holeIn env y || y `elem` holes
= do sc 1; checkCycle names (y, tm)
un bnames (V i) (P _ x _)
| length bnames > i,
fst (fst (bnames!!i)) == x ||
snd (fst (bnames!!i)) == x = do sc 1; return []
un bnames (P _ x _) (V i)
| length bnames > i,
fst (fst (bnames!!i)) == x ||
snd (fst (bnames!!i)) == x = do sc 1; return []
un bnames (Bind x bx sx) (Bind y by sy) | notHole bx && notHole by
= do h1 <- uB bnames bx by
h2 <- un (((x, y), binderTy bx) : bnames) sx sy
combine bnames h1 h2
un names (App _ fx ax) (App _ fy ay)
= do hf <- un names fx fy
ha <- un names ax ay
combine names hf ha
un names x y
| OK True <- convEq' ctxt holes x y = do sc 1; return []
| otherwise = do UI s f <- get
let r = recoverable (normalise ctxt env x)
(normalise ctxt env y)
let err = cantUnify from r
(topx, xfrom) (topy, yfrom) (CantUnify r (x, Nothing) (y, Nothing) (Msg "") (errEnv env) s) (errEnv env) s
if (not r) then lift $ tfail err
else do put (UI s ((x, y, True, env, err, from, Match) : f))
lift $ tfail err
uB bnames (Let tx vx) (Let ty vy) = do h1 <- un bnames tx ty
h2 <- un bnames vx vy
combine bnames h1 h2
uB bnames (Lam tx) (Lam ty) = un bnames tx ty
uB bnames (Pi i tx _) (Pi i' ty _) = un bnames tx ty
uB bnames x y = do UI s f <- get
let r = recoverable (normalise ctxt env (binderTy x))
(normalise ctxt env (binderTy y))
let err = cantUnify from r (topx, xfrom) (topy, yfrom)
(CantUnify r (binderTy x, Nothing)
(binderTy y, Nothing) (Msg "") (errEnv env) s)
(errEnv env) s
put (UI s ((binderTy x, binderTy y,
False,
env, err, from, Match) : f))
return []
notHole (Hole _) = False
notHole _ = True
sc i = do UI s f <- get
put (UI (s+i) f)
unifyFail x y = do UI s f <- get
let r = recoverable (normalise ctxt env x)
(normalise ctxt env y)
let err = cantUnify from r
(topx, xfrom) (topy, yfrom)
(CantUnify r (x, Nothing) (y, Nothing) (Msg "") (errEnv env) s) (errEnv env) s
put (UI s ((x, y, True, env, err, from, Match) : f))
lift $ tfail err
combine bnames as [] = return as
combine bnames as ((n, t) : bs)
= case lookup n as of
Nothing -> combine bnames (as ++ [(n,t)]) bs
Just t' -> do ns <- un bnames t t'
let ns' = filter (\ (x, _) -> x/=n) ns
sc 1
combine bnames as (ns' ++ bs)
checkCycle ns p@(x, P _ x' _) | x == x' = return []
checkCycle ns p@(x, P _ _ _) = return [p]
checkCycle ns (x, tm)
| not (x `elem` freeNames tm) = checkScope ns (x, tm)
| otherwise = lift $ tfail (InfiniteUnify x tm (errEnv env))
checkScope ns (x, tm) =
let v = highV (1) tm in
if v >= length ns
then lift $ tfail (Msg "SCOPE ERROR")
else return [(x, bind v ns tm)]
where inst [] tm = tm
inst ((n, _) : ns) tm = inst ns (substV (P Bound n Erased) tm)
bind i ns tm
| i < 0 = tm
| otherwise = let ((x,y),ty) = ns!!i in
App MaybeHoles (Bind y (Lam ty) (bind (i1) ns tm))
(P Bound x ty)
renameBinders env (x, t) = (x, renameBindersTm env t)
renameBindersTm :: Env -> TT Name -> TT Name
renameBindersTm env tm = uniqueBinders (map fst env) tm
where
uniqueBinders env (Bind n b sc)
| n `elem` env
= let n' = uniqueName n env in
explicitHole $ Bind n' (fmap (uniqueBinders env) b)
(uniqueBinders (n':env) (rename n n' sc))
| otherwise = Bind n (fmap (uniqueBinders (n:env)) b)
(uniqueBinders (n:env) sc)
uniqueBinders env (App s f a) = App s (uniqueBinders env f) (uniqueBinders env a)
uniqueBinders env t = t
rename n n' (P nt x ty) | n == x = P nt n' ty
rename n n' (Bind x b sc) = Bind x (fmap (rename n n') b) (rename n n' sc)
rename n n' (App s f a) = App s (rename n n' f) (rename n n' a)
rename n n' t = t
explicitHole (Bind n (Hole ty) sc)
= Bind n (Hole ty) (instantiate (P Bound n ty) sc)
explicitHole t = t
trimSolutions (topx, xfrom) (topy, yfrom) from env topns = followSols [] (dropPairs topns)
where dropPairs [] = []
dropPairs (n@(x, P _ x' _) : ns)
| x == x' = dropPairs ns
| otherwise
= n : dropPairs
(filter (\t -> case t of
(n, P _ n' _) -> not (n == x' && n' == x)
_ -> True) ns)
dropPairs (n : ns) = n : dropPairs ns
followSols vs [] = return []
followSols vs ((n, P _ t _) : ns)
| Just t' <- lookup t ns
= do vs' <- case t' of
P _ tn _ ->
if (n, tn) `elem` vs then
tfail (cantUnify from False (topx, xfrom) (topy, yfrom)
(Msg "") (errEnv env) 0)
else return ((n, tn) : vs)
_ -> return vs
followSols vs' ((n, t') : ns)
followSols vs (n : ns) = do ns' <- followSols vs ns
return $ n : ns'
expandLets env (x, tm) = (x, doSubst (reverse env) tm)
where
doSubst [] tm = tm
doSubst ((n, Let v t) : env) tm
= doSubst env (subst n v tm)
doSubst (_ : env) tm
= doSubst env tm
hasv :: TT Name -> Bool
hasv (V x) = True
hasv (App _ f a) = hasv f || hasv a
hasv (Bind x b sc) = hasv (binderTy b) || hasv sc
hasv _ = False
unify :: Context -> Env ->
(TT Name, Maybe Provenance) ->
(TT Name, Maybe Provenance) ->
[Name] -> [Name] -> [Name] -> [FailContext] ->
TC ([(Name, TT Name)], Fails)
unify ctxt env (topx, xfrom) (topy, yfrom) inj holes usersupp from =
case runStateT (un False [] (renameBindersTm env topx)
(renameBindersTm env topy)) (UI 0 []) of
OK (v, UI _ []) -> do v' <- trimSolutions (topx, xfrom) (topy, yfrom) from env v
return (map (renameBinders env) v', [])
res ->
let topxn = renameBindersTm env (normalise ctxt env topx)
topyn = renameBindersTm env (normalise ctxt env topy) in
case runStateT (un False [] topxn topyn)
(UI 0 []) of
OK (v, UI _ fails) ->
do v' <- trimSolutions (topx, xfrom) (topy, yfrom) from env v
return (map (renameBinders env) v', reverse fails)
Error e -> tfail e
where
headDiff (P (DCon _ _ _) x _) (P (DCon _ _ _) y _) = x /= y
headDiff (P (TCon _ _) x _) (P (TCon _ _) y _) = x /= y
headDiff _ _ = False
injective (P (DCon _ _ _) _ _) = True
injective (P (TCon _ _) _ _) = True
injective (App _ f a) = injective f
injective _ = False
injectiveVar (P _ n _) = n `elem` inj
injectiveVar (App _ f a) = injectiveVar f
injectiveVar _ = False
injectiveApp x = injective x || injectiveVar x
notP (P _ _ _) = False
notP _ = True
sc i = do UI s f <- get
put (UI (s+i) f)
errors :: StateT UInfo TC Bool
errors = do UI s f <- get
return (not (null f))
uplus u1 u2 = do UI s f <- get
r <- u1
UI s f' <- get
if (length f == length f')
then return r
else do put (UI s f); u2
un :: Bool -> [((Name, Name), TT Name)] -> TT Name -> TT Name ->
StateT UInfo
TC [(Name, TT Name)]
un = un'
un' :: Bool -> [((Name, Name), TT Name)] -> TT Name -> TT Name ->
StateT UInfo
TC [(Name, TT Name)]
un' fn names x y | x == y = return []
un' fn names topx@(P (DCon _ _ _) x _) topy@(P (DCon _ _ _) y _)
| x /= y = unifyFail topx topy
un' fn names topx@(P (TCon _ _) x _) topy@(P (TCon _ _) y _)
| x /= y = unifyFail topx topy
un' fn names topx@(P (DCon _ _ _) x _) topy@(P (TCon _ _) y _)
= unifyFail topx topy
un' fn names topx@(P (TCon _ _) x _) topy@(P (DCon _ _ _) y _)
= unifyFail topx topy
un' fn names topx@(Constant _) topy@(P (TCon _ _) y _)
= unifyFail topx topy
un' fn names topx@(P (TCon _ _) x _) topy@(Constant _)
= unifyFail topx topy
un' fn bnames tx@(P _ x _) ty@(P _ y _)
| (x,y) `elem` map fst bnames || x == y = do sc 1; return []
| injective tx && not (holeIn env y || y `elem` holes)
= unifyTmpFail tx ty
| injective ty && not (holeIn env x || x `elem` holes)
= unifyTmpFail tx ty
| tx /= ty && (holeIn env x || x `elem` holes)
&& (holeIn env y || y `elem` holes)
= case compare (envPos 0 x env) (envPos 0 y env) of
LT -> do sc 1; checkCycle bnames (x, ty)
_ -> do sc 1; checkCycle bnames (y, tx)
where envPos i n ((n',_):env) | n == n' = i
envPos i n (_:env) = envPos (i+1) n env
envPos _ _ _ = 100000
un' fn bnames xtm@(P _ x _) tm
| pureTerm tm, holeIn env x || x `elem` holes
= do UI s f <- get
x <- checkCycle bnames (x, tm)
if (notP tm && fn)
then unifyTmpFail xtm tm
else do sc 1
return x
| pureTerm tm, not (injective xtm) && injective tm
= do checkCycle bnames (x, tm)
unifyTmpFail xtm tm
un' fn bnames tm ytm@(P _ y _)
| pureTerm tm, holeIn env y || y `elem` holes
= do UI s f <- get
x <- checkCycle bnames (y, tm)
if (notP tm && fn)
then unifyTmpFail tm ytm
else do sc 1
return x
| pureTerm tm, not (injective ytm) && injective tm
= do checkCycle bnames (y, tm)
unifyTmpFail tm ytm
un' fn bnames (V i) (P _ x _)
| length bnames > i,
fst ((map fst bnames)!!i) == x ||
snd ((map fst bnames)!!i) == x = do sc 1; return []
un' fn bnames (P _ x _) (V i)
| length bnames > i,
fst ((map fst bnames)!!i) == x ||
snd ((map fst bnames)!!i) == x = do sc 1; return []
un' fn names topx@(Bind n (Hole t) sc) y = unifyTmpFail topx y
un' fn names x topy@(Bind n (Hole t) sc) = unifyTmpFail x topy
un' fn bnames appx@(App _ _ _) appy@(App _ _ _)
= unApp fn bnames appx appy
un' fn bnames x (Bind n (Lam t) (App _ y (P Bound n' _)))
| n == n' = un' False bnames x y
un' fn bnames (Bind n (Lam t) (App _ x (P Bound n' _))) y
| n == n' = un' False bnames x y
un' fn bnames x (Bind n (Lam t) (App _ y (V 0)))
= un' False bnames x y
un' fn bnames (Bind n (Lam t) (App _ x (V 0))) y
= un' False bnames x y
un' fn bnames (App _ f x) (Bind n (Pi i t k) y)
| noOccurrence n y && injectiveApp f
= do ux <- un' False bnames x y
uf <- un' False bnames f (Bind (sMN 0 "uv") (Lam (TType (UVar 0)))
(Bind n (Pi i t k) (V 1)))
combine bnames ux uf
un' fn bnames (Bind n (Pi i t k) y) (App _ f x)
| noOccurrence n y && injectiveApp f
= do ux <- un' False bnames y x
uf <- un' False bnames (Bind (sMN 0 "uv") (Lam (TType (UVar 0)))
(Bind n (Pi i t k) (V 1))) f
combine bnames ux uf
un' fn bnames (Bind x bx sx) (Bind y by sy)
| sameBinder bx by
= do h1 <- uB bnames bx by
h2 <- un' False (((x,y),binderTy bx):bnames) sx sy
combine bnames h1 h2
where sameBinder (Lam _) (Lam _) = True
sameBinder (Pi i _ _) (Pi i' _ _) = True
sameBinder _ _ = False
un' fn bnames x y
| OK True <- convEq' ctxt holes x y = do sc 1; return []
| isUniverse x && isUniverse y = do sc 1; return []
| otherwise = do UI s f <- get
let r = recoverable (normalise ctxt env x)
(normalise ctxt env y)
let err = cantUnify from r
(topx, xfrom) (topy, yfrom) (CantUnify r (x, Nothing) (y, Nothing) (Msg "") (errEnv env) s) (errEnv env) s
if (not r) then lift $ tfail err
else do put (UI s ((x, y, True, env, err, from, Unify) : f))
return []
unApp fn bnames appx@(App _ fx ax) appy@(App _ fy ay)
| (injectiveApp fx && fx == fy)
= un' False bnames ax ay
| (injectiveApp fx && injectiveApp fy)
|| (injectiveApp fx && metavarApp fy && ax == ay)
|| (injectiveApp fy && metavarApp fx && ax == ay)
= do let (headx, _) = unApply fx
let (heady, _) = unApply fy
checkHeads headx heady
uplus
(do hf <- un' True bnames fx fy
let ax' = hnormalise hf ctxt env (substNames hf ax)
let ay' = hnormalise hf ctxt env (substNames hf ay)
ha <- un' False bnames ax' ay'
sc 1
combine bnames hf ha)
(do ha <- un' False bnames ax ay
let fx' = hnormalise ha ctxt env (substNames ha fx)
let fy' = hnormalise ha ctxt env (substNames ha fy)
hf <- un' False bnames fx' fy'
sc 1
combine bnames hf ha)
| otherwise = unifyTmpFail appx appy
where hnormalise [] _ _ t = t
hnormalise ns ctxt env t = normalise ctxt env t
checkHeads (P (DCon _ _ _) x _) (P (DCon _ _ _) y _)
| x /= y = unifyFail appx appy
checkHeads (P (TCon _ _) x _) (P (TCon _ _) y _)
| x /= y = unifyFail appx appy
checkHeads (P (DCon _ _ _) x _) (P (TCon _ _) y _)
= unifyFail appx appy
checkHeads (P (TCon _ _) x _) (P (DCon _ _ _) y _)
= unifyFail appx appy
checkHeads _ _ = return []
unArgs as [] [] = return as
unArgs as (x : xs) (y : ys)
= do let x' = hnormalise as ctxt env (substNames as x)
let y' = hnormalise as ctxt env (substNames as y)
as' <- un' False bnames x' y'
vs <- combine bnames as as'
unArgs vs xs ys
numArgs tm = let (f, args) = unApply tm in length args
metavarApp tm = let (f, args) = unApply tm in
(metavar f &&
all (\x -> metavarApp x) args
&& nub args == args) ||
globmetavar tm
metavarArgs tm = let (f, args) = unApply tm in
all (\x -> metavar x || inenv x) args
&& nub args == args
metavarApp' tm = let (f, args) = unApply tm in
all (\x -> pat x || metavar x) (f : args)
&& nub args == args
rigid (P (DCon _ _ _) _ _) = True
rigid (P (TCon _ _) _ _) = True
rigid t@(P Ref _ _) = inenv t || globmetavar t
rigid (Constant _) = True
rigid (App _ f a) = rigid f && rigid a
rigid t = not (metavar t) || globmetavar t
globmetavar t = case unApply t of
(P _ x _, _) ->
case lookupDef x ctxt of
[TyDecl _ _] -> True
_ -> False
_ -> False
metavar t = case t of
P _ x _ -> (x `notElem` usersupp &&
(x `elem` holes || holeIn env x))
|| globmetavar t
_ -> False
pat t = case t of
P _ x _ -> x `elem` holes || patIn env x
_ -> False
inenv t = case t of
P _ x _ -> x `elem` (map fst env)
_ -> False
notFn t = injective t || metavar t || inenv t
unifyTmpFail :: Term -> Term -> StateT UInfo TC [(Name, TT Name)]
unifyTmpFail x y
= do UI s f <- get
let r = recoverable (normalise ctxt env x) (normalise ctxt env y)
let err = cantUnify from r
(topx, xfrom) (topy, yfrom)
(CantUnify r (x, Nothing) (y, Nothing) (Msg "") (errEnv env) s) (errEnv env) s
put (UI s ((topx, topy, True, env, err, from, Unify) : f))
return []
unifyFail x y = do UI s f <- get
let r = recoverable (normalise ctxt env x) (normalise ctxt env y)
let err = cantUnify from r
(topx, xfrom) (topy, yfrom)
(CantUnify r (x, Nothing) (y, Nothing) (Msg "") (errEnv env) s) (errEnv env) s
put (UI s ((topx, topy, True, env, err, from, Unify) : f))
lift $ tfail err
uB bnames (Let tx vx) (Let ty vy)
= do h1 <- un' False bnames tx ty
h2 <- un' False bnames vx vy
sc 1
combine bnames h1 h2
uB bnames (Guess tx vx) (Guess ty vy)
= do h1 <- un' False bnames tx ty
h2 <- un' False bnames vx vy
sc 1
combine bnames h1 h2
uB bnames (Lam tx) (Lam ty) = do sc 1; un' False bnames tx ty
uB bnames (Pi _ tx _) (Pi _ ty _) = do sc 1; un' False bnames tx ty
uB bnames (Hole tx) (Hole ty) = un' False bnames tx ty
uB bnames (PVar tx) (PVar ty) = un' False bnames tx ty
uB bnames x y = do UI s f <- get
let r = recoverable (normalise ctxt env (binderTy x))
(normalise ctxt env (binderTy y))
let err = cantUnify from r (topx, xfrom) (topy, yfrom)
(CantUnify r (binderTy x, Nothing) (binderTy y, Nothing) (Msg "") (errEnv env) s)
(errEnv env) s
put (UI s ((binderTy x, binderTy y,
False,
env, err, from, Unify) : f))
return []
checkCycle ns p@(x, P _ _ _) = return [p]
checkCycle ns (x, tm)
| not (x `elem` freeNames tm) = checkScope ns (x, tm)
| otherwise = lift $ tfail (InfiniteUnify x tm (errEnv env))
checkScope ns (x, tm) | pureTerm tm =
let v = highV (1) tm in
if v >= length ns
then lift $ tfail (Msg "SCOPE ERROR")
else return [(x, bind v ns tm)]
where inst [] tm = tm
inst (((n, _), _) : ns) tm = inst ns (substV (P Bound n Erased) tm)
checkScope ns (x, tm) = lift $ tfail (Msg "HOLE ERROR")
bind i ns tm
| i < 0 = tm
| otherwise = let ((x,y),ty) = ns!!i in
App MaybeHoles (Bind y (Lam ty) (bind (i1) ns tm))
(P Bound x ty)
combineArgs bnames args = ca [] args where
ca acc [] = return acc
ca acc (x : xs) = do x' <- combine bnames acc x
ca x' xs
combine bnames as [] = return as
combine bnames as ((n, t) : bs)
= case lookup n as of
Nothing -> combine bnames (as ++ [(n,t)]) bs
Just t' -> do ns <- un' False bnames t t'
let ns' = filter (\ (x, _) -> x/=n) ns
sc 1
combine bnames as (ns' ++ bs)
boundVs :: Int -> Term -> [Int]
boundVs i (V j) | j < i = []
| otherwise = [j]
boundVs i (Bind n b sc) = boundVs (i + 1) sc
boundVs i (App _ f x) = let fs = boundVs i f
xs = boundVs i x in
nub (fs ++ xs)
boundVs i _ = []
highV :: Int -> Term -> Int
highV i (V j) | j > i = j
| otherwise = i
highV i (Bind n b sc) = maximum [i, highV i (binderTy b), (highV i sc 1)]
highV i (App _ f x) = max (highV i f) (highV i x)
highV i _ = i
envPos x i [] = 0
envPos x i ((y, _) : ys) | x == y = i
| otherwise = envPos x (i + 1) ys
recoverable t@(App _ _ _) _
| (P _ (UN l) _, _) <- unApply t, l == txt "Lazy'" = False
recoverable _ t@(App _ _ _)
| (P _ (UN l) _, _) <- unApply t, l == txt "Lazy'" = False
recoverable (P (DCon _ _ _) x _) (P (DCon _ _ _) y _) = x == y
recoverable (P (TCon _ _) x _) (P (TCon _ _) y _) = x == y
recoverable (Constant _) (P (DCon _ _ _) y _) = False
recoverable (Constant x) (Constant y) = x == y
recoverable (P (DCon _ _ _) x _) (Constant _) = False
recoverable (Constant _) (P (TCon _ _) y _) = False
recoverable (P (TCon _ _) x _) (Constant _) = False
recoverable (P (DCon _ _ _) x _) (P (TCon _ _) y _) = False
recoverable (P (TCon _ _) x _) (P (DCon _ _ _) y _) = False
recoverable p@(Constant _) (App _ f a) = recoverable p f
recoverable (App _ f a) p@(Constant _) = recoverable f p
recoverable p@(P _ n _) (App _ f a) = recoverable p f
recoverable (App _ f a) p@(P _ _ _) = recoverable f p
recoverable (App _ f a) (App _ f' a')
| f == f' = recoverable a a'
recoverable (App _ f a) (App _ f' a')
= recoverable f f'
recoverable f (Bind _ (Pi _ _ _) sc)
| (P (DCon _ _ _) _ _, _) <- unApply f = False
| (P (TCon _ _) _ _, _) <- unApply f = False
| (Constant _) <- f = False
recoverable (Bind _ (Pi _ _ _) sc) f
| (P (DCon _ _ _) _ _, _) <- unApply f = False
| (P (TCon _ _) _ _, _) <- unApply f = False
| (Constant _) <- f = False
recoverable (Bind _ (Lam _) sc) f = recoverable sc f
recoverable f (Bind _ (Lam _) sc) = recoverable f sc
recoverable x y = True
errEnv :: [(a, Binder b)] -> [(a, b)]
errEnv = map (\(x, b) -> (x, binderTy b))
holeIn :: Env -> Name -> Bool
holeIn env n = case lookup n env of
Just (Hole _) -> True
Just (Guess _ _) -> True
_ -> False
patIn :: Env -> Name -> Bool
patIn env n = case lookup n env of
Just (PVar _) -> True
Just (PVTy _) -> True
_ -> False