module Idris.Core.Constraints ( ucheck ) where
import Idris.Core.TT ( TC(..), UExp(..), UConstraint(..), FC(..),
ConstraintFC(..), Err'(..) )
import Control.Applicative
import Control.Monad.State.Strict
import Data.List ( partition )
import qualified Data.Map.Strict as M
import qualified Data.Set as S
ucheck :: S.Set ConstraintFC -> TC ()
ucheck = void . solve 10 . S.filter (not . ignore)
where
ignore (ConstraintFC c _) | any (== Var (1)) (varsIn c) = True
ignore (ConstraintFC (ULE a b) _) = a == b
ignore _ = False
newtype Var = Var Int
deriving (Eq, Ord, Show)
data Domain = Domain Int Int
deriving (Eq, Ord, Show)
data SolverState =
SolverState
{ queue :: Queue
, domainStore :: M.Map Var ( Domain
, S.Set ConstraintFC
)
, cons_lhs :: M.Map Var (S.Set ConstraintFC)
, cons_rhs :: M.Map Var (S.Set ConstraintFC)
}
data Queue = Queue [ConstraintFC] (S.Set UConstraint)
solve :: Int -> S.Set ConstraintFC -> TC (M.Map Var Int)
solve maxUniverseLevel ucs =
evalStateT (propagate >> extractSolution) initSolverState
where
inpConstraints = S.toAscList ucs
initSolverState :: SolverState
initSolverState =
let
(initUnaryQueue, initQueue) = partition (\ c -> length (varsIn (uconstraint c)) == 1) inpConstraints
in
SolverState
{ queue = Queue (initUnaryQueue ++ initQueue) (S.fromList (map uconstraint (initUnaryQueue ++ initQueue)))
, domainStore = M.fromList
[ (v, (Domain 0 maxUniverseLevel, S.empty))
| v <- ordNub [ v
| ConstraintFC c _ <- inpConstraints
, v <- varsIn c
]
]
, cons_lhs = constraintsLHS
, cons_rhs = constraintsRHS
}
lhs (ULT (UVar x) _) = Just (Var x)
lhs (ULE (UVar x) _) = Just (Var x)
lhs _ = Nothing
rhs (ULT _ (UVar x)) = Just (Var x)
rhs (ULE _ (UVar x)) = Just (Var x)
rhs _ = Nothing
constraintsLHS :: M.Map Var (S.Set ConstraintFC)
constraintsLHS = M.fromListWith S.union
[ (v, S.singleton (ConstraintFC c fc))
| (ConstraintFC c fc) <- inpConstraints
, let vars = varsIn c
, length vars > 1
, v <- vars
, lhs c == Just v
]
constraintsRHS :: M.Map Var (S.Set ConstraintFC)
constraintsRHS = M.fromListWith S.union
[ (v, S.singleton (ConstraintFC c fc))
| (ConstraintFC c fc) <- inpConstraints
, let vars = varsIn c
, length vars > 1
, v <- vars
, rhs c == Just v
]
propagate :: StateT SolverState TC ()
propagate = do
mcons <- nextConstraint
case mcons of
Nothing -> return ()
Just (ConstraintFC cons fc) -> do
case cons of
ULE a b -> do
Domain lowerA upperA <- domainOf a
Domain lowerB upperB <- domainOf b
when (upperB < upperA) $ updateUpperBoundOf (ConstraintFC cons fc) a upperB
when (lowerA > lowerB) $ updateLowerBoundOf (ConstraintFC cons fc) b lowerA
ULT a b -> do
Domain lowerA upperA <- domainOf a
Domain lowerB upperB <- domainOf b
let upperB_pred = pred upperB
let lowerA_succ = succ lowerA
when (upperB_pred < upperA) $ updateUpperBoundOf (ConstraintFC cons fc) a upperB_pred
when (lowerA_succ > lowerB) $ updateLowerBoundOf (ConstraintFC cons fc) b lowerA_succ
propagate
extractSolution :: (MonadState SolverState m, Functor m) => m (M.Map Var Int)
extractSolution = M.map (extractValue . fst) <$> gets domainStore
extractValue :: Domain -> Int
extractValue (Domain x _) = x
nextConstraint :: MonadState SolverState m => m (Maybe ConstraintFC)
nextConstraint = do
Queue list set <- gets queue
case list of
[] -> return Nothing
(q:qs) -> do
modify $ \ st -> st { queue = Queue qs (S.delete (uconstraint q) set) }
return (Just q)
domainOf :: MonadState SolverState m => UExp -> m Domain
domainOf (UVar var) = gets (fst . (M.! Var var) . domainStore)
domainOf (UVal val) = return (Domain val val)
updateUpperBoundOf :: ConstraintFC -> UExp -> Int -> StateT SolverState TC ()
updateUpperBoundOf suspect (UVar var) upper = do
doms <- gets domainStore
let (oldDom@(Domain lower _), suspects) = doms M.! Var var
let newDom = Domain lower upper
when (wipeOut newDom) $ lift $ Error $ At (ufc suspect) $ Msg $ unlines
$ "Universe inconsistency."
: ("Working on: " ++ show (UVar var))
: ("Old domain: " ++ show oldDom)
: ("New domain: " ++ show newDom)
: "Involved constraints: "
: map (("\t"++) . show) (suspect : S.toList suspects)
modify $ \ st -> st { domainStore = M.insert (Var var) (newDom, S.insert suspect suspects) doms }
addToQueueRHS (uconstraint suspect) (Var var)
updateUpperBoundOf _ UVal{} _ = return ()
updateLowerBoundOf :: ConstraintFC -> UExp -> Int -> StateT SolverState TC ()
updateLowerBoundOf suspect (UVar var) lower = do
doms <- gets domainStore
let (oldDom@(Domain _ upper), suspects) = doms M.! Var var
let newDom = Domain lower upper
when (wipeOut newDom) $ lift $ Error $ At (ufc suspect) $ Msg $ unlines
$ "Universe inconsistency."
: ("Working on: " ++ show (UVar var))
: ("Old domain: " ++ show oldDom)
: ("New domain: " ++ show newDom)
: "Involved constraints: "
: map (("\t"++) . show) (suspect : S.toList suspects)
modify $ \ st -> st { domainStore = M.insert (Var var) (newDom, S.insert suspect suspects) doms }
addToQueueLHS (uconstraint suspect) (Var var)
updateLowerBoundOf _ UVal{} _ = return ()
addToQueueLHS :: MonadState SolverState m => UConstraint -> Var -> m ()
addToQueueLHS thisCons var = do
clhs <- gets cons_lhs
case M.lookup var clhs of
Nothing -> return ()
Just cs -> do
Queue list set <- gets queue
let set' = S.insert thisCons set
let newCons = [ c | c <- S.toList cs, uconstraint c `S.notMember` set' ]
if null newCons
then return ()
else modify $ \ st -> st { queue = Queue (list ++ newCons)
(S.union set (S.fromList (map uconstraint newCons))) }
addToQueueRHS :: MonadState SolverState m => UConstraint -> Var -> m ()
addToQueueRHS thisCons var = do
crhs <- gets cons_rhs
case M.lookup var crhs of
Nothing -> return ()
Just cs -> do
Queue list set <- gets queue
let set' = S.insert thisCons set
let newCons = [ c | c <- S.toList cs, uconstraint c `S.notMember` set' ]
if null newCons
then return ()
else modify $ \ st -> st { queue = Queue (list ++ newCons)
(insertAll (map uconstraint newCons) set) }
insertAll [] s = s
insertAll (x : xs) s = insertAll xs (S.insert x s)
wipeOut :: Domain -> Bool
wipeOut (Domain l u) = l > u
ordNub :: Ord a => [a] -> [a]
ordNub = S.toList . S.fromList
varsIn :: UConstraint -> [Var]
varsIn (ULT a b) = [ Var v | UVar v <- [a,b] ]
varsIn (ULE a b) = [ Var v | UVar v <- [a,b] ]