module IRTS.Compiler(compile, generate) where
import IRTS.Lang
import IRTS.LangOpts
import IRTS.Defunctionalise
import IRTS.Simplified
import IRTS.CodegenCommon
import IRTS.CodegenC
import IRTS.DumpBC
import IRTS.CodegenJavaScript
import IRTS.Inliner
import IRTS.Exports
import IRTS.Portable
import Idris.AbsSyntax
import Idris.AbsSyntaxTree
import Idris.ASTUtils
import Idris.Erasure
import Idris.Error
import Idris.Output
import Debug.Trace
import Idris.Core.TT
import Idris.Core.Evaluate
import Idris.Core.CaseTree
import Control.Category
import Prelude hiding (id, (.))
import Control.Applicative
import Control.Monad.State
import Data.Maybe
import Data.List
import Data.Ord
import Data.IntSet (IntSet)
import qualified Data.IntSet as IS
import qualified Data.Map as M
import qualified Data.Set as S
import System.Process
import System.IO
import System.Exit
import System.Directory
import System.Environment
import System.FilePath ((</>), addTrailingPathSeparator)
compile :: Codegen -> FilePath -> Maybe Term -> Idris CodegenInfo
compile codegen f mtm
= do checkMVs
checkTotality
exports <- findExports
let rootNames = case mtm of
Nothing -> []
Just t -> freeNames t
reachableNames <- performUsageAnalysis
(rootNames ++ getExpNames exports)
maindef <- case mtm of
Nothing -> return []
Just tm -> do md <- irMain tm
logCodeGen 1 $ "MAIN: " ++ show md
return [(sMN 0 "runMain", md)]
objs <- getObjectFiles codegen
libs <- getLibs codegen
flags <- getFlags codegen
hdrs <- getHdrs codegen
impdirs <- allImportDirs
defsIn <- mkDecls reachableNames
let iface = case mtm of
Nothing -> True
Just _ -> False
let defs = defsIn ++ maindef
let defsInlined = inlineAll defs
let defsUniq = map (allocUnique (addAlist defsInlined emptyContext))
defsInlined
let (nexttag, tagged) = addTags 65536 (liftAll defsUniq)
let ctxtIn = addAlist tagged emptyContext
logCodeGen 1 "Defunctionalising"
let defuns_in = defunctionalise nexttag ctxtIn
logCodeGen 5 $ show defuns_in
logCodeGen 1 "Inlining"
let defuns = inline defuns_in
logCodeGen 5 $ show defuns
logCodeGen 1 "Resolving variables for CG"
let checked = simplifyDefs defuns (toAlist defuns)
outty <- outputTy
dumpCases <- getDumpCases
dumpDefun <- getDumpDefun
case dumpCases of
Nothing -> return ()
Just f -> runIO $ writeFile f (showCaseTrees defs)
case dumpDefun of
Nothing -> return ()
Just f -> runIO $ writeFile f (dumpDefuns defuns)
triple <- Idris.AbsSyntax.targetTriple
cpu <- Idris.AbsSyntax.targetCPU
logCodeGen 1 "Building output"
case checked of
OK c -> do return $ CodegenInfo f outty triple cpu
hdrs impdirs objs libs flags
NONE c (toAlist defuns)
tagged iface exports
Error e -> ierror e
where checkMVs = do i <- getIState
case map fst (idris_metavars i) \\ primDefs of
[] -> return ()
ms -> do iputStrLn $ "WARNING: There are incomplete holes:\n " ++ show ms
iputStrLn "\nEvaluation of any of these will crash at run time."
return ()
checkTotality = do i <- getIState
case idris_totcheckfail i of
[] -> return ()
((fc, msg):fs) -> ierror . At fc . Msg $ "Cannot compile:\n " ++ msg
generate :: Codegen -> FilePath -> CodegenInfo -> IO ()
generate codegen mainmod ir
= case codegen of
Via _ "c" -> codegenC ir
Via fm cg -> do input <- case fm of
IBCFormat -> return mainmod
JSONFormat -> do
tempdir <- getTemporaryDirectory
(fn, h) <- openTempFile tempdir "idris-cg.json"
writePortable h ir
hClose h
return fn
let cmd = "idris-codegen-" ++ cg
args = [input, "-o", outputFile ir] ++ compilerFlags ir
exit <- rawSystem cmd args
when (exit /= ExitSuccess) $
putStrLn ("FAILURE: " ++ show cmd ++ " " ++ show args)
Bytecode -> dumpBC (simpleDecls ir) (outputFile ir)
irMain :: TT Name -> Idris LDecl
irMain tm = do
i <- irTerm M.empty [] tm
return $ LFun [] (sMN 0 "runMain") [] (LForce i)
mkDecls :: [Name] -> Idris [(Name, LDecl)]
mkDecls used
= do i <- getIState
let ds = filter (\(n, d) -> n `elem` used || isCon d) $ ctxtAlist (tt_ctxt i)
decls <- mapM build ds
return decls
showCaseTrees :: [(Name, LDecl)] -> String
showCaseTrees = showSep "\n\n" . map showCT . sortBy (comparing defnRank)
where
showCT (n, LFun _ f args lexp)
= show n ++ " " ++ showSep " " (map show args) ++ " =\n\t"
++ show lexp
showCT (n, LConstructor c t a) = "data " ++ show n ++ " " ++ show a
defnRank :: (Name, LDecl) -> String
defnRank (n, LFun _ _ _ _) = "1" ++ nameRank n
defnRank (n, LConstructor _ _ _) = "2" ++ nameRank n
nameRank :: Name -> String
nameRank (UN s) = "1" ++ show s
nameRank (MN i s) = "2" ++ show s ++ show i
nameRank (NS n ns) = "3" ++ concatMap show (reverse ns) ++ nameRank n
nameRank (SN sn) = "4" ++ snRank sn
nameRank n = "5" ++ show n
snRank :: SpecialName -> String
snRank (WhereN i n n') = "1" ++ nameRank n' ++ nameRank n ++ show i
snRank (InstanceN n args) = "2" ++ nameRank n ++ concatMap show args
snRank (ParentN n s) = "3" ++ nameRank n ++ show s
snRank (MethodN n) = "4" ++ nameRank n
snRank (CaseN _ n) = "5" ++ nameRank n
snRank (ElimN n) = "6" ++ nameRank n
snRank (InstanceCtorN n) = "7" ++ nameRank n
snRank (WithN i n) = "8" ++ nameRank n ++ show i
isCon (TyDecl _ _) = True
isCon _ = False
build :: (Name, Def) -> Idris (Name, LDecl)
build (n, d)
= do i <- getIState
case getPrim n i of
Just (ar, op) ->
let args = map (\x -> sMN x "op") [0..] in
return (n, (LFun [] n (take ar args)
(LOp op (map (LV . Glob) (take ar args)))))
_ -> do def <- mkLDecl n d
logCodeGen 3 $ "Compiled " ++ show n ++ " =\n\t" ++ show def
return (n, def)
where getPrim n i
| Just (ar, op) <- lookup n (idris_scprims i)
= Just (ar, op)
| Just ar <- lookup n (S.toList (idris_externs i))
= Just (ar, LExternal n)
getPrim n i = Nothing
declArgs args inl n (LLam xs x) = declArgs (args ++ xs) inl n x
declArgs args inl n x = LFun (if inl then [Inline] else []) n args x
mkLDecl n (Function tm _)
= declArgs [] True n <$> irTerm M.empty [] tm
mkLDecl n (CaseOp ci _ _ _ pats cd)
= declArgs [] (case_inlinable ci || caseName n) n <$> irTree args sc
where
(args, sc) = cases_runtime cd
caseName (SN (CaseN _ _)) = True
caseName (SN (WithN _ _)) = True
caseName (NS n _) = caseName n
caseName _ = False
mkLDecl n (TyDecl (DCon tag arity _) _) =
LConstructor n tag . length <$> fgetState (cg_usedpos . ist_callgraph n)
mkLDecl n (TyDecl (TCon t a) _) = return $ LConstructor n (1) a
mkLDecl n _ = return $ (declArgs [] True n LNothing)
data VarInfo = VI
{ viMethod :: Maybe Name
}
deriving Show
type Vars = M.Map Name VarInfo
irTerm :: Vars -> [Name] -> Term -> Idris LExp
irTerm vs env tm@(App _ f a) = do
ist <- getIState
case unApply tm of
(P _ n _, args)
| n `elem` map fst (idris_metavars ist) \\ primDefs
-> return $ LError $ "ABORT: Attempt to evaluate hole " ++ show n
(P _ (UN m) _, args)
| m == txt "mkForeignPrim"
-> doForeign vs env (reverse (drop 4 args))
(P _ (UN u) _, [_, arg])
| u == txt "unsafePerformPrimIO"
-> irTerm vs env arg
(P _ (UN r) _, [_, _, _, _, _, arg])
| r == txt "replace"
-> irTerm vs env arg
(P _ (UN r) _, _)
| r == txt "void"
-> return LNothing
(P _ (UN l) _, [_, arg])
| l == txt "lazy"
-> error "lazy has crept in somehow"
(P _ (UN l) _, [_, arg])
| l == txt "force"
-> LForce <$> irTerm vs env arg
(P _ (UN l) _, [_, _, arg])
| l == txt "Delay"
-> LLazyExp <$> irTerm vs env arg
(P _ (UN l) _, [_, _, arg])
| l == txt "Force"
-> LForce <$> irTerm vs env arg
(P _ (UN a) _, [_, _, _, arg])
| a == txt "assert_smaller"
-> irTerm vs env arg
(P _ (UN a) _, [_, arg])
| a == txt "assert_total"
-> irTerm vs env arg
(P _ (UN p) _, [_, arg])
| p == txt "par"
-> do arg' <- irTerm vs env arg
return $ LOp LPar [LLazyExp arg']
(P _ (UN pf) _, [arg])
| pf == txt "prim_fork"
-> do arg' <- irTerm vs env arg
return $ LOp LFork [LLazyExp arg']
(P _ (UN m) _, [_,size,t])
| m == txt "malloc"
-> irTerm vs env t
(P _ (UN tm) _, [_,t])
| tm == txt "trace_malloc"
-> irTerm vs env t
(P _ (NS (UN be) [b,p]) _, [_,x,(App _ (App _ (App _ (P _ (UN d) _) _) _) t),
(App _ (App _ (App _ (P _ (UN d') _) _) _) e)])
| be == txt "ifThenElse"
, d == txt "Delay"
, d' == txt "Delay"
, b == txt "Bool"
, p == txt "Prelude"
-> do
x' <- irTerm vs env x
t' <- irTerm vs env t
e' <- irTerm vs env e
return (LCase Shared x'
[LConCase 0 (sNS (sUN "False") ["Bool","Prelude"]) [] e'
,LConCase 1 (sNS (sUN "True" ) ["Bool","Prelude"]) [] t'
])
(P (DCon t arity _) n _, args) -> do
detag <- fgetState (opt_detaggable . ist_optimisation n)
used <- map fst <$> fgetState (cg_usedpos . ist_callgraph n)
let isNewtype = length used == 1 && detag
let argsPruned = [a | (i,a) <- zip [0..] args, i `elem` used]
let padLams = padLambdas used (length args) arity
case compare (length args) arity of
GT -> ifail ("overapplied data constructor: " ++ show tm ++
"\nDEBUG INFO:\n" ++
"Arity: " ++ show arity ++ "\n" ++
"Arguments: " ++ show args ++ "\n" ++
"Pruned arguments: " ++ show argsPruned)
EQ | isNewtype
-> irTerm vs env (head argsPruned)
| otherwise
-> buildApp (LV $ Glob n) argsPruned
LT | isNewtype
, length argsPruned == 1
-> padLams . (\tm [] -> tm)
<$> irTerm vs env (head argsPruned)
| isNewtype
-> return . padLams $ \[vn] -> LApp False (LV $ Glob n) [LV $ Glob vn]
| otherwise
-> padLams . applyToNames <$> buildApp (LV $ Glob n) argsPruned
(P (TCon t a) n _, args) -> return LNothing
(P _ n _, args) | S.member (n, length args) (idris_externs ist) -> do
LOp (LExternal n) <$> mapM (irTerm vs env) args
(P _ n _, args) -> do
case lookup n (idris_scprims ist) of
Just (arity, op) | length args == arity
-> LOp op <$> mapM (irTerm vs env) args
_ -> applyName n ist args
(V i, args) -> irTerm vs env $ mkApp (P Bound (env !! i) Erased) args
(f, args)
-> LApp False
<$> irTerm vs env f
<*> mapM (irTerm vs env) args
where
buildApp :: LExp -> [Term] -> Idris LExp
buildApp e [] = return e
buildApp e xs = LApp False e <$> mapM (irTerm vs env) xs
applyToNames :: LExp -> [Name] -> LExp
applyToNames tm [] = tm
applyToNames tm ns = LApp False tm $ map (LV . Glob) ns
padLambdas :: [Int] -> Int -> Int -> ([Name] -> LExp) -> LExp
padLambdas used startIdx endSIdx mkTerm
= LLam allNames $ mkTerm nonerasedNames
where
allNames = [sMN i "sat" | i <- [startIdx .. endSIdx1]]
nonerasedNames = [sMN i "sat" | i <- [startIdx .. endSIdx1], i `elem` used]
applyName :: Name -> IState -> [Term] -> Idris LExp
applyName n ist args =
LApp False (LV $ Glob n) <$> mapM (irTerm vs env . erase) (zip [0..] args)
where
erase (i, x)
| i >= arity || i `elem` used = x
| otherwise = Erased
arity = case fst4 <$> lookupCtxtExact n (definitions . tt_ctxt $ ist) of
Just (CaseOp ci ty tys def tot cdefs) -> length tys
Just (TyDecl (DCon tag ar _) _) -> ar
Just (TyDecl Ref ty) -> length $ getArgTys ty
Just (Operator ty ar op) -> ar
Just def -> error $ "unknown arity: " ++ show (n, def)
Nothing -> 0
uName
| Just n' <- viMethod =<< M.lookup n vs = n'
| otherwise = n
used = maybe [] (map fst . usedpos) $ lookupCtxtExact uName (idris_callgraph ist)
fst4 (x,_,_,_,_) = x
irTerm vs env (P _ n _) = return $ LV (Glob n)
irTerm vs env (V i)
| i >= 0 && i < length env = return $ LV (Glob (env!!i))
| otherwise = ifail $ "bad de bruijn index: " ++ show i
irTerm vs env (Bind n (Lam _) sc) = LLam [n'] <$> irTerm vs (n':env) sc
where
n' = uniqueName n env
irTerm vs env (Bind n (Let _ v) sc)
= LLet n <$> irTerm vs env v <*> irTerm vs (n : env) sc
irTerm vs env (Bind _ _ _) = return $ LNothing
irTerm vs env (Proj t (1)) = do
t' <- irTerm vs env t
return $ LOp (LMinus (ATInt ITBig))
[t', LConst (BI 1)]
irTerm vs env (Proj t i) = LProj <$> irTerm vs env t <*> pure i
irTerm vs env (Constant TheWorld) = return $ LNothing
irTerm vs env (Constant c) = return $ LConst c
irTerm vs env (TType _) = return $ LNothing
irTerm vs env Erased = return $ LNothing
irTerm vs env Impossible = return $ LNothing
doForeign :: Vars -> [Name] -> [Term] -> Idris LExp
doForeign vs env (ret : fname : world : args)
= do args' <- mapM splitArg args
let fname' = toFDesc fname
let ret' = toFDesc ret
return $ LForeign ret' fname' args'
where
splitArg tm | (_, [_,_,l,r]) <- unApply tm
= do let l' = toFDesc l
r' <- irTerm vs env r
return (l', r')
splitArg _ = ifail $ "Badly formed foreign function call"
toFDesc (Constant (Str str)) = FStr str
toFDesc tm
| (P _ n _, []) <- unApply tm = FCon (deNS n)
| (P _ n _, as) <- unApply tm = FApp (deNS n) (map toFDesc as)
toFDesc _ = FUnknown
deNS (NS n _) = n
deNS n = n
doForeign vs env xs = ifail "Badly formed foreign function call"
irTree :: [Name] -> SC -> Idris LExp
irTree args tree = do
logCodeGen 3 $ "Compiling " ++ show args ++ "\n" ++ show tree
LLam args <$> irSC M.empty tree
irSC :: Vars -> SC -> Idris LExp
irSC vs (STerm t) = irTerm vs [] t
irSC vs (UnmatchedCase str) = return $ LError str
irSC vs (ProjCase tm alts) = do
tm' <- irTerm vs [] tm
alts' <- mapM (irAlt vs tm') alts
return $ LCase Shared tm' alts'
irSC vs (Case up n [ConCase (UN delay) i [_, _, n'] sc])
| delay == txt "Delay"
= do sc' <- irSC vs $ mkForce n' n sc
return $ LLet n' (LForce (LV (Glob n))) sc'
irSC vs (Case up n [alt]) = do
replacement <- case alt of
ConCase cn a ns sc -> do
detag <- fgetState (opt_detaggable . ist_optimisation cn)
used <- map fst <$> fgetState (cg_usedpos . ist_callgraph cn)
if detag && length used == 1
then return . Just $ substSC (ns !! head used) n sc
else return Nothing
_ -> return Nothing
case replacement of
Just sc -> irSC vs sc
_ -> do
alt' <- irAlt vs (LV (Glob n)) alt
return $ case namesBoundIn alt' `usedIn` subexpr alt' of
[] -> subexpr alt'
_ -> LCase up (LV (Glob n)) [alt']
where
namesBoundIn :: LAlt -> [Name]
namesBoundIn (LConCase cn i ns sc) = ns
namesBoundIn (LConstCase c sc) = []
namesBoundIn (LDefaultCase sc) = []
subexpr :: LAlt -> LExp
subexpr (LConCase _ _ _ e) = e
subexpr (LConstCase _ e) = e
subexpr (LDefaultCase e) = e
irSC vs (Case up n alts@[ConCase cn a ns sc, DefaultCase sc']) = do
detag <- fgetState (opt_detaggable . ist_optimisation cn)
if detag
then irSC vs (Case up n [ConCase cn a ns sc])
else LCase up (LV (Glob n)) <$> mapM (irAlt vs (LV (Glob n))) alts
irSC vs sc@(Case up n alts) = do
goneWrong <- or <$> mapM isDetaggable alts
when goneWrong
$ ifail ("irSC: non-trivial case-match on detaggable data: " ++ show sc)
LCase up (LV (Glob n)) <$> mapM (irAlt vs (LV (Glob n))) alts
where
isDetaggable (ConCase cn _ _ _) = fgetState $ opt_detaggable . ist_optimisation cn
isDetaggable _ = return False
irSC vs ImpossibleCase = return LNothing
irAlt :: Vars -> LExp -> CaseAlt -> Idris LAlt
irAlt vs _ (ConCase n t args sc) = do
used <- map fst <$> fgetState (cg_usedpos . ist_callgraph n)
let usedArgs = [a | (i,a) <- zip [0..] args, i `elem` used]
LConCase (1) n usedArgs <$> irSC (methodVars `M.union` vs) sc
where
methodVars = case n of
SN (InstanceCtorN className)
-> M.fromList [(v, VI
{ viMethod = Just $ mkFieldName n i
}) | (v,i) <- zip args [0..]]
_
-> M.empty
irAlt vs _ (ConstCase x rhs)
| matchable x = LConstCase x <$> irSC vs rhs
| matchableTy x = LDefaultCase <$> irSC vs rhs
where
matchable (I _) = True
matchable (BI _) = True
matchable (Ch _) = True
matchable (Str _) = True
matchable (B8 _) = True
matchable (B16 _) = True
matchable (B32 _) = True
matchable (B64 _) = True
matchable _ = False
matchableTy (AType (ATInt ITNative)) = True
matchableTy (AType (ATInt ITBig)) = True
matchableTy (AType (ATInt ITChar)) = True
matchableTy StrType = True
matchableTy (AType (ATInt (ITFixed IT8))) = True
matchableTy (AType (ATInt (ITFixed IT16))) = True
matchableTy (AType (ATInt (ITFixed IT32))) = True
matchableTy (AType (ATInt (ITFixed IT64))) = True
matchableTy _ = False
irAlt vs tm (SucCase n rhs) = do
rhs' <- irSC vs rhs
return $ LDefaultCase (LLet n (LOp (LMinus (ATInt ITBig))
[tm,
LConst (BI 1)]) rhs')
irAlt vs _ (ConstCase c rhs)
= ifail $ "Can't match on (" ++ show c ++ ")"
irAlt vs _ (DefaultCase rhs)
= LDefaultCase <$> irSC vs rhs