
  

Hybrid Type Checking

An implementation of λH

David Waern
Rickard Nilsson



  

Hybrid Type Checking

 Cormac Flanagan POPL 2006

 A combination of Static and Dynamic checking

If a specification can't be checked statically, it will be checked dynamically

 Dynamic Type Casts

Casts are inserted when static checking fails to prove or disprove



  

Hybrid Type Checking

 Precise specifications are supported

 Advanced specifications and static analyses can be tried out

 Selectable trade-off between compilation speed and coverage



  

λH

 Typed λ-calculus

 Refinement types

Natural = {x:Int | x > 0}

 Dependent function types

f :: m:Int -> n:Natural -> {x: Int | x = m + n}

 Undecidable type checking



  

Implementation

 Follows Flanagan's description closely

 Haskell



  

Parser

 Parsec parser combinator library

 Tested with QuickCheck



  

Type checker / Compiler

 Basic structural static type checking

 Actual checking done in subtyping function

 Casts injected if sub typer fails



  

Subtyping

 Simple rejections

 Accepts types with structurally equal predicates

 Refinement predicate evaluation for applications of constants

 Easily extendable

 Possible to plugin a theorem prover



  

Interpreter

 Evaluates inserted casts, which may fail



  

Demonstration


