-- | Robert Morris and D. Starr. \"The Structure of All-Interval Series\". -- /Journal of Music Theory/, 18:364-389, 1974. module Music.Theory.Z.Morris_1974 where import qualified Control.Monad.Logic as L {- logict -} -- | 'L.msum' '.' 'map' 'return'. -- -- > L.observeAll (fromList [1..7]) == [1..7] fromList :: L.MonadPlus m => [a] -> m a fromList = L.msum . map return -- | Interval from /i/ to /j/ in modulo-/n/. -- -- > let f = int_n 12 in (f 0 11,f 11 0) == (11,1) int_n :: Integral a => a -> a -> a -> a int_n n i j = abs ((j - i) `mod` n) -- | 'L.MonadLogic' all-interval series. -- -- > map (length . L.observeAll . all_interval_m) [4,6,8,10] == [2,4,24,288] -- > [0,1,3,2,9,5,10,4,7,11,8,6] `elem` L.observeAll (all_interval_m 12) -- > length (L.observeAll (all_interval_m 12)) == 3856 all_interval_m :: L.MonadLogic m => Int -> m [Int] all_interval_m n = let recur k p q = -- k = length p, p = pitch-class sequence, q = interval set if k == n then return (reverse p) else do i <- fromList [1 .. n - 1] L.guard (i `notElem` p) let j:_ = p m = int_n n i j L.guard (m `notElem` q) recur (k + 1) (i : p) (m : q) in recur 1 [0] [] {- | 'L.observeAll' of 'all_interval_m'. > let r = [[0,1,5,2,4,3],[0,2,1,4,5,3],[0,4,5,2,1,3],[0,5,1,4,2,3]] > all_interval 6 == r > d_dx_n n l = zipWith (int_n n) l (tail l) > map (d_dx_n 6) r == [[1,4,3,2,5],[2,5,3,1,4],[4,1,3,5,2],[5,2,3,4,1]] -} all_interval :: Int -> [[Int]] all_interval = L.observeAll . all_interval_m