#include #define RVEC(A) int A##n, double*A##p #define RMAT(A) int A##r, int A##c, double* A##p #define KRVEC(A) int A##n, const double*A##p #define KRMAT(A) int A##r, int A##c, const double* A##p #define CVEC(A) int A##n, gsl_complex*A##p #define CMAT(A) int A##r, int A##c, gsl_complex* A##p #define KCVEC(A) int A##n, const gsl_complex*A##p #define KCMAT(A) int A##r, int A##c, const gsl_complex* A##p #define FVEC(A) int A##n, float*A##p #define FMAT(A) int A##r, int A##c, float* A##p #define KFVEC(A) int A##n, const float*A##p #define KFMAT(A) int A##r, int A##c, const float* A##p #define QVEC(A) int A##n, gsl_complex_float*A##p #define QMAT(A) int A##r, int A##c, gsl_complex_float* A##p #define KQVEC(A) int A##n, const gsl_complex_float*A##p #define KQMAT(A) int A##r, int A##c, const gsl_complex_float* A##p #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MACRO(B) do {B} while (0) #define ERROR(CODE) MACRO(return CODE;) #define REQUIRES(COND, CODE) MACRO(if(!(COND)) {ERROR(CODE);}) #define OK return 0; #define MIN(A,B) ((A)<(B)?(A):(B)) #define MAX(A,B) ((A)>(B)?(A):(B)) #ifdef DBG #define DEBUGMSG(M) printf("*** calling aux C function: %s\n",M); #else #define DEBUGMSG(M) #endif #define CHECK(RES,CODE) MACRO(if(RES) return CODE;) #ifdef DBG #define DEBUGMAT(MSG,X) printf(MSG" = \n"); gsl_matrix_fprintf(stdout,X,"%f"); printf("\n"); #else #define DEBUGMAT(MSG,X) #endif #ifdef DBG #define DEBUGVEC(MSG,X) printf(MSG" = \n"); gsl_vector_fprintf(stdout,X,"%f"); printf("\n"); #else #define DEBUGVEC(MSG,X) #endif #define DVVIEW(A) gsl_vector_view A = gsl_vector_view_array(A##p,A##n) #define DMVIEW(A) gsl_matrix_view A = gsl_matrix_view_array(A##p,A##r,A##c) #define CVVIEW(A) gsl_vector_complex_view A = gsl_vector_complex_view_array((double*)A##p,A##n) #define CMVIEW(A) gsl_matrix_complex_view A = gsl_matrix_complex_view_array((double*)A##p,A##r,A##c) #define KDVVIEW(A) gsl_vector_const_view A = gsl_vector_const_view_array(A##p,A##n) #define KDMVIEW(A) gsl_matrix_const_view A = gsl_matrix_const_view_array(A##p,A##r,A##c) #define KCVVIEW(A) gsl_vector_complex_const_view A = gsl_vector_complex_const_view_array((double*)A##p,A##n) #define KCMVIEW(A) gsl_matrix_complex_const_view A = gsl_matrix_complex_const_view_array((double*)A##p,A##r,A##c) #define FVVIEW(A) gsl_vector_float_view A = gsl_vector_float_view_array(A##p,A##n) #define FMVIEW(A) gsl_matrix_float_view A = gsl_matrix_float_view_array(A##p,A##r,A##c) #define QVVIEW(A) gsl_vector_complex_float_view A = gsl_vector_float_complex_view_array((float*)A##p,A##n) #define QMVIEW(A) gsl_matrix_complex_float_view A = gsl_matrix_float_complex_view_array((float*)A##p,A##r,A##c) #define KFVVIEW(A) gsl_vector_float_const_view A = gsl_vector_float_const_view_array(A##p,A##n) #define KFMVIEW(A) gsl_matrix_float_const_view A = gsl_matrix_float_const_view_array(A##p,A##r,A##c) #define KQVVIEW(A) gsl_vector_complex_float_const_view A = gsl_vector_complex_float_const_view_array((float*)A##p,A##n) #define KQMVIEW(A) gsl_matrix_complex_float_const_view A = gsl_matrix_complex_float_const_view_array((float*)A##p,A##r,A##c) #define V(a) (&a.vector) #define M(a) (&a.matrix) #define GCVEC(A) int A##n, gsl_complex*A##p #define KGCVEC(A) int A##n, const gsl_complex*A##p #define GQVEC(A) int A##n, gsl_complex_float*A##p #define KGQVEC(A) int A##n, const gsl_complex_float*A##p #define BAD_SIZE 2000 #define BAD_CODE 2001 #define MEM 2002 #define BAD_FILE 2003 void no_abort_on_error() { gsl_set_error_handler_off(); } int fft(int code, KCVEC(X), CVEC(R)) { REQUIRES(Xn == Rn,BAD_SIZE); DEBUGMSG("fft"); int s = Xn; gsl_fft_complex_wavetable * wavetable = gsl_fft_complex_wavetable_alloc (s); gsl_fft_complex_workspace * workspace = gsl_fft_complex_workspace_alloc (s); gsl_vector_const_view X = gsl_vector_const_view_array((double*)Xp, 2*Xn); gsl_vector_view R = gsl_vector_view_array((double*)Rp, 2*Rn); gsl_blas_dcopy(&X.vector,&R.vector); if(code==0) { gsl_fft_complex_forward ((double*)Rp, 1, s, wavetable, workspace); } else { gsl_fft_complex_inverse ((double*)Rp, 1, s, wavetable, workspace); } gsl_fft_complex_wavetable_free (wavetable); gsl_fft_complex_workspace_free (workspace); OK } int deriv(int code, double f(double, void*), double x, double h, double * result, double * abserr) { gsl_function F; F.function = f; F.params = 0; if(code==0) return gsl_deriv_central (&F, x, h, result, abserr); if(code==1) return gsl_deriv_forward (&F, x, h, result, abserr); if(code==2) return gsl_deriv_backward (&F, x, h, result, abserr); return 0; } int spline_eval(const double xa[], const double ya[], unsigned int size, double x, int method, double *y) { DEBUGMSG("spline_eval"); const gsl_interp_type *T; switch (method) { case 0: { T = gsl_interp_linear; break; } case 1: { T = gsl_interp_polynomial; break; } case 2: { T = gsl_interp_cspline; break; } case 3: { T = gsl_interp_cspline_periodic; break; } case 4: { T = gsl_interp_akima; break; } case 5: { T = gsl_interp_akima_periodic; break; } default: ERROR(BAD_CODE); } gsl_spline *spline = gsl_spline_alloc(T, size); if (NULL == spline) ERROR(MEM); const int initres = gsl_spline_init(spline, xa, ya, size); CHECK(initres,initres); gsl_interp_accel *acc = gsl_interp_accel_alloc(); if (NULL == acc) { gsl_spline_free(spline); ERROR(MEM); }; const int res = gsl_spline_eval_e(spline, x, acc, y); CHECK(res,res); gsl_interp_accel_free(acc); gsl_spline_free(spline); OK } int spline_eval_deriv(const double xa[], const double ya[], unsigned int size, double x, int method, double *y) { DEBUGMSG("spline_eval_deriv"); const gsl_interp_type *T; switch (method) { case 0: { T = gsl_interp_linear; break; } case 1: { T = gsl_interp_polynomial; break; } case 2: { T = gsl_interp_cspline; break; } case 3: { T = gsl_interp_cspline_periodic; break; } case 4: { T = gsl_interp_akima; break; } case 5: { T = gsl_interp_akima_periodic; break; } default: ERROR(BAD_CODE); } gsl_spline *spline = gsl_spline_alloc(T, size); if (NULL == spline) ERROR(MEM); const int initres = gsl_spline_init(spline, xa, ya, size); CHECK(initres,initres); gsl_interp_accel *acc = gsl_interp_accel_alloc(); if (NULL == acc) { gsl_spline_free(spline); ERROR(MEM); }; const int res = gsl_spline_eval_deriv_e(spline, x, acc, y); CHECK(res,res); gsl_interp_accel_free(acc); gsl_spline_free(spline); OK } int spline_eval_deriv2(const double xa[], const double ya[], unsigned int size, double x, int method, double *y) { DEBUGMSG("spline_eval_deriv2"); const gsl_interp_type *T; switch (method) { case 0: { T = gsl_interp_linear; break; } case 1: { T = gsl_interp_polynomial; break; } case 2: { T = gsl_interp_cspline; break; } case 3: { T = gsl_interp_cspline_periodic; break; } case 4: { T = gsl_interp_akima; break; } case 5: { T = gsl_interp_akima_periodic; break; } default: ERROR(BAD_CODE); } gsl_spline *spline = gsl_spline_alloc(T, size); if (NULL == spline) ERROR(MEM); const int initres = gsl_spline_init(spline, xa, ya, size); CHECK(initres,initres); gsl_interp_accel *acc = gsl_interp_accel_alloc(); if (NULL == acc) { gsl_spline_free(spline); ERROR(MEM); }; const int res = gsl_spline_eval_deriv2_e(spline, x, acc, y); CHECK(res,res); gsl_interp_accel_free(acc); gsl_spline_free(spline); OK } int spline_eval_integ(const double xa[], const double ya[], unsigned int size, double a, double b, int method, double *y) { DEBUGMSG("spline_eval_integ"); const gsl_interp_type *T; switch (method) { case 0: { T = gsl_interp_linear; break; } case 1: { T = gsl_interp_polynomial; break; } case 2: { T = gsl_interp_cspline; break; } case 3: { T = gsl_interp_cspline_periodic; break; } case 4: { T = gsl_interp_akima; break; } case 5: { T = gsl_interp_akima_periodic; break; } default: ERROR(BAD_CODE); } gsl_spline *spline = gsl_spline_alloc(T, size); if (NULL == spline) ERROR(MEM); const int initres = gsl_spline_init(spline, xa, ya, size); CHECK(initres,initres); gsl_interp_accel *acc = gsl_interp_accel_alloc(); if (NULL == acc) { gsl_spline_free(spline); ERROR(MEM); }; const int res = gsl_spline_eval_integ_e(spline, a, b, acc, y); CHECK(res,res); gsl_interp_accel_free(acc); gsl_spline_free(spline); OK } int integrate_qng(double f(double, void*), double a, double b, double aprec, double prec, double *result, double*error) { DEBUGMSG("integrate_qng"); gsl_function F; F.function = f; F.params = NULL; size_t neval; int res = gsl_integration_qng (&F, a,b, aprec, prec, result, error, &neval); CHECK(res,res); OK } int integrate_qags(double f(double,void*), double a, double b, double aprec, double prec, int w, double *result, double* error) { DEBUGMSG("integrate_qags"); gsl_integration_workspace * wk = gsl_integration_workspace_alloc (w); gsl_function F; F.function = f; F.params = NULL; int res = gsl_integration_qags (&F, a,b, aprec, prec, w,wk, result, error); CHECK(res,res); gsl_integration_workspace_free (wk); OK } int integrate_qagi(double f(double,void*), double aprec, double prec, int w, double *result, double* error) { DEBUGMSG("integrate_qagi"); gsl_integration_workspace * wk = gsl_integration_workspace_alloc (w); gsl_function F; F.function = f; F.params = NULL; int res = gsl_integration_qagi (&F, aprec, prec, w,wk, result, error); CHECK(res,res); gsl_integration_workspace_free (wk); OK } int integrate_qagiu(double f(double,void*), double a, double aprec, double prec, int w, double *result, double* error) { DEBUGMSG("integrate_qagiu"); gsl_integration_workspace * wk = gsl_integration_workspace_alloc (w); gsl_function F; F.function = f; F.params = NULL; int res = gsl_integration_qagiu (&F, a, aprec, prec, w,wk, result, error); CHECK(res,res); gsl_integration_workspace_free (wk); OK } int integrate_qagil(double f(double,void*), double b, double aprec, double prec, int w, double *result, double* error) { DEBUGMSG("integrate_qagil"); gsl_integration_workspace * wk = gsl_integration_workspace_alloc (w); gsl_function F; F.function = f; F.params = NULL; int res = gsl_integration_qagil (&F, b, aprec, prec, w,wk, result, error); CHECK(res,res); gsl_integration_workspace_free (wk); OK } int integrate_cquad(double f(double,void*), double a, double b, double aprec, double prec, int w, double *result, double* error, int *neval) { DEBUGMSG("integrate_cquad"); gsl_integration_cquad_workspace * wk = gsl_integration_cquad_workspace_alloc (w); gsl_function F; F.function = f; F.params = NULL; size_t * sneval = NULL; int res = gsl_integration_cquad (&F, a, b, aprec, prec, wk, result, error, sneval); *neval = *sneval; CHECK(res,res); gsl_integration_cquad_workspace_free (wk); OK } int polySolve(KRVEC(a), CVEC(z)) { DEBUGMSG("polySolve"); REQUIRES(an>1,BAD_SIZE); gsl_poly_complex_workspace * w = gsl_poly_complex_workspace_alloc (an); int res = gsl_poly_complex_solve ((double*)ap, an, w, (double*)zp); CHECK(res,res); gsl_poly_complex_workspace_free (w); OK; } int vector_fscanf(char*filename, RVEC(a)) { DEBUGMSG("gsl_vector_fscanf"); DVVIEW(a); FILE * f = fopen(filename,"r"); CHECK(!f,BAD_FILE); int res = gsl_vector_fscanf(f,V(a)); CHECK(res,res); fclose (f); OK } int vector_fprintf(char*filename, char*fmt, RVEC(a)) { DEBUGMSG("gsl_vector_fprintf"); DVVIEW(a); FILE * f = fopen(filename,"w"); CHECK(!f,BAD_FILE); int res = gsl_vector_fprintf(f,V(a),fmt); CHECK(res,res); fclose (f); OK } int vector_fread(char*filename, RVEC(a)) { DEBUGMSG("gsl_vector_fread"); DVVIEW(a); FILE * f = fopen(filename,"r"); CHECK(!f,BAD_FILE); int res = gsl_vector_fread(f,V(a)); CHECK(res,res); fclose (f); OK } int vector_fwrite(char*filename, RVEC(a)) { DEBUGMSG("gsl_vector_fwrite"); DVVIEW(a); FILE * f = fopen(filename,"w"); CHECK(!f,BAD_FILE); int res = gsl_vector_fwrite(f,V(a)); CHECK(res,res); fclose (f); OK } int matrix_fprintf(char*filename, char*fmt, int ro, RMAT(m)) { DEBUGMSG("matrix_fprintf"); FILE * f = fopen(filename,"w"); CHECK(!f,BAD_FILE); int i,j,sr,sc; if (ro==1) { sr = mc; sc = 1;} else { sr = 1; sc = mr;} #define AT(M,r,c) (M##p[(r)*sr+(c)*sc]) for (i=0; isize,sizeof(double)); int k; for(k=0;ksize;k++) { p[k] = gsl_vector_get(x,k); } double res = f(x->size,p); free(p); return res; } double only_f_aux_root(double x, void *pars); int uniMinimize(int method, double f(double), double epsrel, int maxit, double min, double xl, double xu, RMAT(sol)) { REQUIRES(solr == maxit && solc == 4,BAD_SIZE); DEBUGMSG("minimize_only_f"); gsl_function my_func; my_func.function = only_f_aux_root; my_func.params = f; size_t iter = 0; int status; const gsl_min_fminimizer_type *T; gsl_min_fminimizer *s; // Starting point switch(method) { case 0 : {T = gsl_min_fminimizer_goldensection; break; } case 1 : {T = gsl_min_fminimizer_brent; break; } case 2 : {T = gsl_min_fminimizer_quad_golden; break; } default: ERROR(BAD_CODE); } s = gsl_min_fminimizer_alloc (T); gsl_min_fminimizer_set (s, &my_func, min, xl, xu); do { double current_min, current_lo, current_hi; status = gsl_min_fminimizer_iterate (s); current_min = gsl_min_fminimizer_x_minimum (s); current_lo = gsl_min_fminimizer_x_lower (s); current_hi = gsl_min_fminimizer_x_upper (s); solp[iter*solc] = iter + 1; solp[iter*solc+1] = current_min; solp[iter*solc+2] = current_lo; solp[iter*solc+3] = current_hi; iter++; if (status) /* check if solver is stuck */ break; status = gsl_min_test_interval (current_lo, current_hi, 0, epsrel); } while (status == GSL_CONTINUE && iter < maxit); int i; for (i=iter; ifval; solp[iter*solc+2] = size; int k; for(k=0;kx,k); } iter++; if (status) break; status = gsl_multimin_test_size (size, tolsize); } while (status == GSL_CONTINUE && iter < maxit); int i,j; for (i=iter; isize,sizeof(double)); int k; for(k=0;ksize;k++) { p[k] = gsl_vector_get(x,k); } double res = fdf->f(x->size,p); free(p); return res; } void df_aux_min(const gsl_vector * x, void * pars, gsl_vector * g) { Tfdf * fdf = ((Tfdf*) pars); double* p = (double*)calloc(x->size,sizeof(double)); double* q = (double*)calloc(g->size,sizeof(double)); int k; for(k=0;ksize;k++) { p[k] = gsl_vector_get(x,k); } fdf->df(x->size,p,g->size,q); for(k=0;ksize;k++) { gsl_vector_set(g,k,q[k]); } free(p); free(q); } void fdf_aux_min(const gsl_vector * x, void * pars, double * f, gsl_vector * g) { *f = f_aux_min(x,pars); df_aux_min(x,pars,g); } int minimizeD(int method, double f(int, double*), int df(int, double*, int, double*), double initstep, double minimpar, double tolgrad, int maxit, KRVEC(xi), RMAT(sol)) { REQUIRES(solr == maxit && solc == 2+xin,BAD_SIZE); DEBUGMSG("minimizeWithDeriv (conjugate_fr)"); gsl_multimin_function_fdf my_func; // extract function from pars my_func.f = f_aux_min; my_func.df = df_aux_min; my_func.fdf = fdf_aux_min; my_func.n = xin; Tfdf stfdf; stfdf.f = f; stfdf.df = df; my_func.params = &stfdf; size_t iter = 0; int status; const gsl_multimin_fdfminimizer_type *T; gsl_multimin_fdfminimizer *s = NULL; // Starting point KDVVIEW(xi); // conjugate gradient fr switch(method) { case 0 : {T = gsl_multimin_fdfminimizer_conjugate_fr; break; } case 1 : {T = gsl_multimin_fdfminimizer_conjugate_pr; break; } case 2 : {T = gsl_multimin_fdfminimizer_vector_bfgs; break; } case 3 : {T = gsl_multimin_fdfminimizer_vector_bfgs2; break; } case 4 : {T = gsl_multimin_fdfminimizer_steepest_descent; break; } default: ERROR(BAD_CODE); } s = gsl_multimin_fdfminimizer_alloc (T, my_func.n); gsl_multimin_fdfminimizer_set (s, &my_func, V(xi), initstep, minimpar); do { status = gsl_multimin_fdfminimizer_iterate (s); solp[iter*solc+0] = iter+1; solp[iter*solc+1] = s->f; int k; for(k=0;kx,k); } iter++; if (status) break; status = gsl_multimin_test_gradient (s->gradient, tolgrad); } while (status == GSL_CONTINUE && iter < maxit); int i,j; for (i=iter; if)(x); } double jf_aux_uni(double x, void * pars) { uniTfjf * fjf = ((uniTfjf*) pars); return (fjf->jf)(x); } void fjf_aux_uni(double x, void * pars, double * f, double * g) { *f = f_aux_uni(x,pars); *g = jf_aux_uni(x,pars); } int rootj(int method, double f(double), double df(double), double epsrel, int maxit, double x, RMAT(sol)) { REQUIRES(solr == maxit && solc == 2,BAD_SIZE); DEBUGMSG("root_fjf"); gsl_function_fdf my_func; // extract function from pars my_func.f = f_aux_uni; my_func.df = jf_aux_uni; my_func.fdf = fjf_aux_uni; uniTfjf stfjf; stfjf.f = f; stfjf.jf = df; my_func.params = &stfjf; size_t iter = 0; int status; const gsl_root_fdfsolver_type *T; gsl_root_fdfsolver *s; // Starting point switch(method) { case 0 : {T = gsl_root_fdfsolver_newton;; break; } case 1 : {T = gsl_root_fdfsolver_secant; break; } case 2 : {T = gsl_root_fdfsolver_steffenson; break; } default: ERROR(BAD_CODE); } s = gsl_root_fdfsolver_alloc (T); gsl_root_fdfsolver_set (s, &my_func, x); do { double x0; status = gsl_root_fdfsolver_iterate (s); x0 = x; x = gsl_root_fdfsolver_root(s); solp[iter*solc+0] = iter+1; solp[iter*solc+1] = x; iter++; if (status) /* check if solver is stuck */ break; status = gsl_root_test_delta (x, x0, 0, epsrel); } while (status == GSL_CONTINUE && iter < maxit); int i; for (i=iter; isize,sizeof(double)); double* q = (double*)calloc(y->size,sizeof(double)); int k; for(k=0;ksize;k++) { p[k] = gsl_vector_get(x,k); } f(x->size,p,y->size,q); for(k=0;ksize;k++) { gsl_vector_set(y,k,q[k]); } free(p); free(q); return 0; //hmmm } int multiroot(int method, void f(int, double*, int, double*), double epsabs, int maxit, KRVEC(xi), RMAT(sol)) { REQUIRES(solr == maxit && solc == 1+2*xin,BAD_SIZE); DEBUGMSG("root_only_f"); gsl_multiroot_function my_func; // extract function from pars my_func.f = only_f_aux_multiroot; my_func.n = xin; my_func.params = f; size_t iter = 0; int status; const gsl_multiroot_fsolver_type *T; gsl_multiroot_fsolver *s; // Starting point KDVVIEW(xi); switch(method) { case 0 : {T = gsl_multiroot_fsolver_hybrids;; break; } case 1 : {T = gsl_multiroot_fsolver_hybrid; break; } case 2 : {T = gsl_multiroot_fsolver_dnewton; break; } case 3 : {T = gsl_multiroot_fsolver_broyden; break; } default: ERROR(BAD_CODE); } s = gsl_multiroot_fsolver_alloc (T, my_func.n); gsl_multiroot_fsolver_set (s, &my_func, V(xi)); do { status = gsl_multiroot_fsolver_iterate (s); solp[iter*solc+0] = iter+1; int k; for(k=0;kx,k); } for(k=xin;k<2*xin;k++) { solp[iter*solc+k+1] = gsl_vector_get(s->f,k-xin); } iter++; if (status) /* check if solver is stuck */ break; status = gsl_multiroot_test_residual (s->f, epsabs); } while (status == GSL_CONTINUE && iter < maxit); int i,j; for (i=iter; isize,sizeof(double)); double* q = (double*)calloc(y->size,sizeof(double)); int k; for(k=0;ksize;k++) { p[k] = gsl_vector_get(x,k); } (fjf->f)(x->size,p,y->size,q); for(k=0;ksize;k++) { gsl_vector_set(y,k,q[k]); } free(p); free(q); return 0; } int jf_aux(const gsl_vector * x, void * pars, gsl_matrix * jac) { Tfjf * fjf = ((Tfjf*) pars); double* p = (double*)calloc(x->size,sizeof(double)); double* q = (double*)calloc((jac->size1)*(jac->size2),sizeof(double)); int i,j,k; for(k=0;ksize;k++) { p[k] = gsl_vector_get(x,k); } (fjf->jf)(x->size,p,jac->size1,jac->size2,q); k=0; for(i=0;isize1;i++) { for(j=0;jsize2;j++){ gsl_matrix_set(jac,i,j,q[k++]); } } free(p); free(q); return 0; } int fjf_aux(const gsl_vector * x, void * pars, gsl_vector * f, gsl_matrix * g) { f_aux(x,pars,f); jf_aux(x,pars,g); return 0; } int multirootj(int method, int f(int, double*, int, double*), int jac(int, double*, int, int, double*), double epsabs, int maxit, KRVEC(xi), RMAT(sol)) { REQUIRES(solr == maxit && solc == 1+2*xin,BAD_SIZE); DEBUGMSG("root_fjf"); gsl_multiroot_function_fdf my_func; // extract function from pars my_func.f = f_aux; my_func.df = jf_aux; my_func.fdf = fjf_aux; my_func.n = xin; Tfjf stfjf; stfjf.f = f; stfjf.jf = jac; my_func.params = &stfjf; size_t iter = 0; int status; const gsl_multiroot_fdfsolver_type *T; gsl_multiroot_fdfsolver *s; // Starting point KDVVIEW(xi); switch(method) { case 0 : {T = gsl_multiroot_fdfsolver_hybridsj;; break; } case 1 : {T = gsl_multiroot_fdfsolver_hybridj; break; } case 2 : {T = gsl_multiroot_fdfsolver_newton; break; } case 3 : {T = gsl_multiroot_fdfsolver_gnewton; break; } default: ERROR(BAD_CODE); } s = gsl_multiroot_fdfsolver_alloc (T, my_func.n); gsl_multiroot_fdfsolver_set (s, &my_func, V(xi)); do { status = gsl_multiroot_fdfsolver_iterate (s); solp[iter*solc+0] = iter+1; int k; for(k=0;kx,k); } for(k=xin;k<2*xin;k++) { solp[iter*solc+k+1] = gsl_vector_get(s->f,k-xin); } iter++; if (status) /* check if solver is stuck */ break; status = gsl_multiroot_test_residual (s->f, epsabs); } while (status == GSL_CONTINUE && iter < maxit); int i,j; for (i=iter; if); int k; for(k=0;kx,k); } iter++; if (status) /* check if solver is stuck */ break; status = gsl_multifit_test_delta (s->dx, s->x, epsabs, epsrel); } while (status == GSL_CONTINUE && iter < maxit); int i,j; for (i=iter; iJ, 0.0, M(cov)); gsl_multifit_fdfsolver_free (s); OK } ////////////////////////////////////////////////////// #define RAN(C,F) case C: { for(k=0;k