Copyright | (C) David Himmelstrup |
---|---|
License | see the LICENSE file |
Maintainer | David Himmelstrup |
Safe Haskell | None |
Language | Haskell2010 |
Algorithms.Geometry.PolygonTriangulation.EarClip
Description
Ear clipping triangulation algorithms. The baseline algorithm runs in O(n2) but has a low constant factor overhead. The z-order hashed variant runs in O(nlogn).
References:
Synopsis
- earClip :: (Num r, Ord r) => SimplePolygon p r -> [(Int, Int, Int)]
- earClipRandom :: (Num r, Ord r) => SimplePolygon p r -> [(Int, Int, Int)]
- earClipHashed :: Real r => SimplePolygon p r -> [(Int, Int, Int)]
- earClipRandomHashed :: Real r => SimplePolygon p r -> [(Int, Int, Int)]
- zHash :: V2 Word -> Word
- zUnHash :: Word -> V2 Word
Documentation
earClip :: (Num r, Ord r) => SimplePolygon p r -> [(Int, Int, Int)] Source #
O(n2)
Returns triangular faces using absolute polygon point indices.
earClipRandom :: (Num r, Ord r) => SimplePolygon p r -> [(Int, Int, Int)] Source #
O(n2)
Returns triangular faces using absolute polygon point indices.
earClipHashed :: Real r => SimplePolygon p r -> [(Int, Int, Int)] Source #
O(nlogn) expected time.
Returns triangular faces using absolute polygon point indices.
earClipRandomHashed :: Real r => SimplePolygon p r -> [(Int, Int, Int)] Source #
O(nlogn) expected time.
Returns triangular faces using absolute polygon point indices.