{-# Language ImplicitParams #-} {-# Language ConstraintKinds #-} {-# Language FlexibleInstances #-} {-# Language DataKinds #-} {-# Language GADTs #-} {-# Language RecordWildCards #-} {-# Language ScopedTypeVariables #-} {-# Language StandaloneDeriving #-} {-# Language StrictData #-} {-# Language TemplateHaskell #-} {-# Language TypeOperators #-} {-# Language ViewPatterns #-} module EVM where import Prelude hiding (log, Word, exponent, GT, LT) import Data.SBV hiding (Word, output, Unknown) import Data.Proxy (Proxy(..)) import Data.Text (unpack) import Data.Text.Encoding (decodeUtf8, encodeUtf8) import qualified Data.Vector as V import EVM.ABI import EVM.Types import EVM.Solidity import EVM.Concrete (createAddress, wordValue, keccakBlob, create2Address, readMemoryWord) import EVM.Symbolic import EVM.Op import EVM.FeeSchedule (FeeSchedule (..)) import Options.Generic as Options import qualified EVM.Precompiled import Control.Lens hiding (op, (:<), (|>), (.>)) import Control.Monad.State.Strict hiding (state) import Data.ByteString (ByteString) import Data.ByteString.Lazy (fromStrict) import Data.Map.Strict (Map) import Data.Set (Set, insert, member, fromList) import Data.Maybe (fromMaybe) import Data.Sequence (Seq) import Data.Vector.Storable (Vector) import Data.Foldable (toList) import Data.Tree import Data.List (find) import qualified Data.ByteString as BS import qualified Data.ByteString.Lazy as LS import qualified Data.ByteString.Char8 as Char8 import qualified Data.ByteArray as BA import qualified Data.Map.Strict as Map import qualified Data.Sequence as Seq import qualified Data.Tree.Zipper as Zipper import qualified Data.Vector as V import qualified Data.Vector.Storable as Vector import qualified Data.Vector.Storable.Mutable as Vector import qualified Data.Vector as RegularVector import Crypto.Number.ModArithmetic (expFast) import qualified Crypto.Hash as Crypto import Crypto.Hash (Digest, SHA256, RIPEMD160, digestFromByteString) import Crypto.PubKey.ECC.ECDSA (signDigestWith, PrivateKey(..), Signature(..)) import Crypto.PubKey.ECC.Types (getCurveByName, CurveName(..), Point(..)) import Crypto.PubKey.ECC.Generate (generateQ) -- * Data types -- | EVM failure modes data Error = BalanceTooLow Word Word | UnrecognizedOpcode Word8 | SelfDestruction | StackUnderrun | BadJumpDestination | Revert ByteString | OutOfGas Word Word | BadCheatCode (Maybe Word32) | StackLimitExceeded | IllegalOverflow | Query Query | Choose Choose | StateChangeWhileStatic | InvalidMemoryAccess | CallDepthLimitReached | MaxCodeSizeExceeded Word Word | InvalidFormat | PrecompileFailure | UnexpectedSymbolicArg | DeadPath | NotUnique Whiff | SMTTimeout | FFI AbiVals deriving instance Show Error -- | The possible result states of a VM data VMResult = VMFailure Error -- ^ An operation failed | VMSuccess Buffer -- ^ Reached STOP, RETURN, or end-of-code deriving instance Show VMResult -- | The state of a stepwise EVM execution data VM = VM { _result :: Maybe VMResult , _state :: FrameState , _frames :: [Frame] , _env :: Env , _block :: Block , _tx :: TxState , _logs :: Seq Log , _traces :: Zipper.TreePos Zipper.Empty Trace , _cache :: Cache , _burned :: Word , _constraints :: [(SBool, Whiff)] , _iterations :: Map CodeLocation Int , _allowFFI :: Bool } deriving (Show) data Trace = Trace { _traceOpIx :: Int , _traceContract :: Contract , _traceData :: TraceData } deriving (Show) data TraceData = EventTrace Log | FrameTrace FrameContext | QueryTrace Query | ErrorTrace Error | EntryTrace Text | ReturnTrace Buffer FrameContext deriving (Show) -- | Queries halt execution until resolved through RPC calls or SMT queries data Query where PleaseFetchContract :: Addr -> StorageModel -> (Contract -> EVM ()) -> Query PleaseMakeUnique :: SymVal a => SBV a -> [SBool] -> (IsUnique a -> EVM ()) -> Query PleaseFetchSlot :: Addr -> Word -> (Word -> EVM ()) -> Query PleaseAskSMT :: SBool -> [SBool] -> (BranchCondition -> EVM ()) -> Query PleaseDoFFI :: [String] -> (ByteString -> EVM ()) -> Query data Choose where PleaseChoosePath :: Whiff -> (Bool -> EVM ()) -> Choose instance Show Query where showsPrec _ = \case PleaseFetchContract addr _ _ -> (("") ++) PleaseFetchSlot addr slot _ -> (("") ++) PleaseAskSMT condition constraints _ -> (("") ++) PleaseMakeUnique val constraints _ -> (("") ++) PleaseDoFFI cmd _ -> ((" ((" b = Cache { _fetched = Map.unionWith unifyCachedContract (view fetched a) (view fetched b) , _path = mappend (view path a) (view path b) } -- only intended for use in Cache merges, where we expect -- everything to be Concrete unifyCachedContract :: Contract -> Contract -> Contract unifyCachedContract a b = a & set storage merged where merged = case (view storage a, view storage b) of (Concrete sa, Concrete sb) -> Concrete (mappend sa sb) _ -> view storage a instance Monoid Cache where mempty = Cache { _fetched = mempty, _path = mempty } -- * Data accessors currentContract :: VM -> Maybe Contract currentContract vm = view (env . contracts . at (view (state . codeContract) vm)) vm -- * Data constructors makeVm :: VMOpts -> VM makeVm o = let txaccessList = vmoptTxAccessList o txorigin = vmoptOrigin o txtoAddr = vmoptAddress o initialAccessedAddrs = fromList $ [txorigin, txtoAddr] ++ [1..9] ++ (Map.keys txaccessList) initialAccessedStorageKeys = fromList $ foldMap (uncurry (map . (,))) (Map.toList txaccessList) touched = if vmoptCreate o then [txorigin] else [txorigin, txtoAddr] in VM { _result = Nothing , _frames = mempty , _tx = TxState { _gasprice = w256 $ vmoptGasprice o , _txgaslimit = w256 $ vmoptGaslimit o , _txPriorityFee = w256 $ vmoptPriorityFee o , _origin = txorigin , _toAddr = txtoAddr , _value = vmoptValue o , _substate = SubState mempty touched initialAccessedAddrs initialAccessedStorageKeys mempty --, _accessList = txaccessList , _isCreate = vmoptCreate o , _txReversion = Map.fromList [(vmoptAddress o, vmoptContract o)] } , _logs = mempty , _traces = Zipper.fromForest [] , _block = Block { _coinbase = vmoptCoinbase o , _timestamp = vmoptTimestamp o , _number = w256 $ vmoptNumber o , _difficulty = w256 $ vmoptDifficulty o , _maxCodeSize = w256 $ vmoptMaxCodeSize o , _gaslimit = w256 $ vmoptBlockGaslimit o , _baseFee = w256 $ vmoptBaseFee o , _schedule = vmoptSchedule o } , _state = FrameState { _pc = 0 , _stack = mempty , _memory = mempty , _memorySize = 0 , _code = theCode , _contract = vmoptAddress o , _codeContract = vmoptAddress o , _calldata = vmoptCalldata o , _callvalue = vmoptValue o , _caller = vmoptCaller o , _gas = w256 $ vmoptGas o , _returndata = mempty , _static = False } , _env = Env { _sha3Crack = mempty , _chainId = w256 $ vmoptChainId o , _contracts = Map.fromList [(vmoptAddress o, vmoptContract o)] , _keccakUsed = mempty , _storageModel = vmoptStorageModel o } , _cache = Cache mempty mempty , _burned = 0 , _constraints = [] , _iterations = mempty , _allowFFI = vmoptAllowFFI o } where theCode = case _contractcode (vmoptContract o) of InitCode b -> b RuntimeCode b -> b -- | Initialize empty contract with given code initialContract :: ContractCode -> Contract initialContract theContractCode = Contract { _contractcode = theContractCode , _codehash = case theCode of ConcreteBuffer b -> keccak (stripBytecodeMetadata b) SymbolicBuffer _ -> 0 , _storage = Concrete mempty , _balance = 0 , _nonce = if creation then 1 else 0 , _opIxMap = mkOpIxMap theCode , _codeOps = mkCodeOps theCode , _external = False , _origStorage = mempty } where (creation, theCode) = case theContractCode of InitCode b -> (True, b) RuntimeCode b -> (False, b) contractWithStore :: ContractCode -> Storage -> Contract contractWithStore theContractCode store = initialContract theContractCode & set storage store -- * Opcode dispatch (exec1) -- | Update program counter next :: (?op :: Word8) => EVM () next = modifying (state . pc) (+ (opSize ?op)) -- | Executes the EVM one step exec1 :: EVM () exec1 = do vm <- get let -- Convenience function to access parts of the current VM state. -- Arcane type signature needed to avoid monomorphism restriction. the :: (b -> VM -> Const a VM) -> ((a -> Const a a) -> b) -> a the f g = view (f . g) vm -- Convenient aliases mem = the state memory stk = the state stack self = the state contract this = fromMaybe (error "internal error: state contract") (preview (ix self) (the env contracts)) fees@FeeSchedule {..} = the block schedule doStop = finishFrame (FrameReturned mempty) if self > 0x0 && self <= 0x9 then do -- call to precompile let ?op = 0x00 -- dummy value let calldatasize = snd (the state calldata) case maybeLitWord calldatasize of Nothing -> vmError UnexpectedSymbolicArg Just calldatasize' -> do copyBytesToMemory (fst $ the state calldata) (num calldatasize') 0 0 executePrecompile self (num $ the state gas) 0 (num calldatasize') 0 0 [] vmx <- get case view (state.stack) vmx of (x:_) -> case maybeLitWord x of Just 0 -> do fetchAccount self $ \_ -> do touchAccount self vmError PrecompileFailure Just _ -> fetchAccount self $ \_ -> do touchAccount self out <- use (state . returndata) finishFrame (FrameReturned out) Nothing -> vmError UnexpectedSymbolicArg _ -> underrun else if the state pc >= len (the state code) then doStop else do let ?op = fromMaybe (error "could not analyze symbolic code") $ unliteral $ EVM.Symbolic.index (the state pc) (the state code) case ?op of -- op: PUSH x | x >= 0x60 && x <= 0x7f -> do let !n = num x - 0x60 + 1 !xs = case the state code of ConcreteBuffer b -> w256lit $ word $ padRight n $ BS.take n (BS.drop (1 + the state pc) b) SymbolicBuffer b -> readSWord' 0 $ padLeft' 32 $ take n $ drop (1 + the state pc) b limitStack 1 $ burn g_verylow $ do next pushSym xs -- op: DUP x | x >= 0x80 && x <= 0x8f -> do let !i = x - 0x80 + 1 case preview (ix (num i - 1)) stk of Nothing -> underrun Just y -> limitStack 1 $ burn g_verylow $ do next pushSym y -- op: SWAP x | x >= 0x90 && x <= 0x9f -> do let i = num (x - 0x90 + 1) if length stk < i + 1 then underrun else burn g_verylow $ do next zoom (state . stack) $ do assign (ix 0) (stk ^?! ix i) assign (ix i) (stk ^?! ix 0) -- op: LOG x | x >= 0xa0 && x <= 0xa4 -> notStatic $ let n = (num x - 0xa0) in case stk of (xOffset':xSize':xs) -> if length xs < n then underrun else forceConcrete2 (xOffset', xSize') $ \(xOffset, xSize) -> do let (topics, xs') = splitAt n xs bytes = readMemory (num xOffset) (num xSize) vm log = Log self bytes topics burn (g_log + g_logdata * (num xSize) + num n * g_logtopic) $ accessMemoryRange fees xOffset xSize $ do traceLog log next assign (state . stack) xs' pushToSequence logs log _ -> underrun -- op: STOP 0x00 -> doStop -- op: ADD 0x01 -> stackOp2 (const g_verylow) (uncurry (+)) -- op: MUL 0x02 -> stackOp2 (const g_low) (uncurry (*)) -- op: SUB 0x03 -> stackOp2 (const g_verylow) (uncurry (-)) -- op: DIV 0x04 -> stackOp2 (const g_low) (uncurry (sDiv)) -- op: SDIV 0x05 -> stackOp2 (const g_low) (uncurry sdiv) -- op: MOD 0x06 -> stackOp2 (const g_low) $ \(S a x, S b y) -> S (ITE (IsZero b) (Literal 0) (Mod a b)) (ite (y .== 0) 0 (x `sMod` y)) -- op: SMOD 0x07 -> stackOp2 (const g_low) $ uncurry smod -- op: ADDMOD 0x08 -> stackOp3 (const g_mid) (\(x, y, z) -> addmod x y z) -- op: MULMOD 0x09 -> stackOp3 (const g_mid) (\(x, y, z) -> mulmod x y z) -- op: LT 0x10 -> stackOp2 (const g_verylow) $ \(S a x, S b y) -> iteWhiff (LT a b) (x .< y) 1 0 -- op: GT 0x11 -> stackOp2 (const g_verylow) $ \(S a x, S b y) -> iteWhiff (GT a b) (x .> y) 1 0 -- op: SLT 0x12 -> stackOp2 (const g_verylow) $ uncurry slt -- op: SGT 0x13 -> stackOp2 (const g_verylow) $ uncurry sgt -- op: EQ 0x14 -> stackOp2 (const g_verylow) $ \(S a x, S b y) -> iteWhiff (Eq a b) (x .== y) 1 0 -- op: ISZERO 0x15 -> stackOp1 (const g_verylow) $ \(S a x) -> iteWhiff (IsZero a) (x .== 0) 1 0 -- op: AND 0x16 -> stackOp2 (const g_verylow) $ uncurry (.&.) -- op: OR 0x17 -> stackOp2 (const g_verylow) $ uncurry (.|.) -- op: XOR 0x18 -> stackOp2 (const g_verylow) $ uncurry xor -- op: NOT 0x19 -> stackOp1 (const g_verylow) complement -- op: BYTE 0x1a -> stackOp2 (const g_verylow) $ \case (n, _) | (forceLit n) >= 32 -> 0 (n, x) | otherwise -> 0xff .&. shiftR x (8 * (31 - num (forceLit n))) -- op: SHL 0x1b -> stackOp2 (const g_verylow) $ \((S a n), (S b x)) -> S (SHL b a) $ sShiftLeft x n -- op: SHR 0x1c -> stackOp2 (const g_verylow) $ \((S a n), (S b x)) -> S (SHR b a) $ sShiftRight x n -- op: SAR 0x1d -> stackOp2 (const g_verylow) $ \((S a n), (S b x)) -> S (SAR b a) $ sSignedShiftArithRight x n -- op: SHA3 -- more accurately refered to as KECCAK 0x20 -> case stk of (xOffset' : xSize' : xs) -> forceConcrete xOffset' $ \xOffset -> forceConcrete xSize' $ \xSize -> burn (g_sha3 + g_sha3word * ceilDiv (num xSize) 32) $ accessMemoryRange fees xOffset xSize $ do (hash@(S _ hash'), invMap, bytes) <- case readMemory xOffset xSize vm of ConcreteBuffer bs -> do pure (litWord $ keccakBlob bs, Map.singleton (keccakBlob bs) bs, litBytes bs) SymbolicBuffer bs -> do let hash' = symkeccak' bs return (S (FromKeccak $ SymbolicBuffer bs) hash', mempty, bs) -- Although we would like to simply assert that the uninterpreted function symkeccak' -- is injective, this proves to cause a lot of concern for our smt solvers, probably -- due to the introduction of universal quantifiers into the queries. -- Instead, we keep track of all of the particular invocations of symkeccak' we see -- (similarly to sha3Crack), and simply assert that injectivity holds for these -- particular invocations. -- -- We additionally make the probabalisitc assumption that the output of symkeccak' -- is greater than 100. This lets us avoid having to reason about storage collisions -- between mappings and "normal" slots let previousUsed = view (env . keccakUsed) vm env . keccakUsed <>= [(bytes, hash')] constraints <>= (hash' .> 100, Todo "probabilistic keccak assumption" []): (fmap (\(preimage, image) -> -- keccak is a function ((preimage .== bytes .=> image .== hash') .&& -- which is injective (image .== hash' .=> preimage .== bytes), Todo "injective keccak assumption" [])) previousUsed) next assign (state . stack) (hash : xs) (env . sha3Crack) <>= invMap _ -> underrun -- op: ADDRESS 0x30 -> limitStack 1 $ burn g_base (next >> push (num self)) -- op: BALANCE 0x31 -> case stk of (x':xs) -> forceConcrete x' $ \x -> accessAndBurn (num x) $ fetchAccount (num x) $ \c -> do next assign (state . stack) xs push (view balance c) [] -> underrun -- op: ORIGIN 0x32 -> limitStack 1 . burn g_base $ next >> push (num (the tx origin)) -- op: CALLER 0x33 -> limitStack 1 . burn g_base $ let toSymWord :: SAddr -> SymWord toSymWord (SAddr x) = case unliteral x of Just s -> litWord $ num s Nothing -> var "CALLER" $ sFromIntegral x in next >> pushSym (toSymWord (the state caller)) -- op: CALLVALUE 0x34 -> limitStack 1 . burn g_base $ next >> pushSym (the state callvalue) -- op: CALLDATALOAD 0x35 -> stackOp1 (const g_verylow) $ \ind -> uncurry (readSWordWithBound ind) (the state calldata) -- op: CALLDATASIZE 0x36 -> limitStack 1 . burn g_base $ next >> pushSym (snd (the state calldata)) -- op: CALLDATACOPY 0x37 -> case stk of (xTo' : xFrom' : xSize' : xs) -> forceConcrete3 (xTo',xFrom',xSize') $ \(xTo,xFrom,xSize) -> burn (g_verylow + g_copy * ceilDiv (num xSize) 32) $ accessUnboundedMemoryRange fees xTo xSize $ do next assign (state . stack) xs case the state calldata of (SymbolicBuffer cd, (S _ cdlen)) -> copyBytesToMemory (SymbolicBuffer [ite (i .<= cdlen) x 0 | (x, i) <- zip cd [1..]]) xSize xFrom xTo -- when calldata is concrete, -- the bound should always be equal to the bytestring length (cd, _) -> copyBytesToMemory cd xSize xFrom xTo _ -> underrun -- op: CODESIZE 0x38 -> limitStack 1 . burn g_base $ next >> push (num (len (the state code))) -- op: CODECOPY 0x39 -> case stk of (memOffset' : codeOffset' : n' : xs) -> forceConcrete3 (memOffset',codeOffset',n') $ \(memOffset,codeOffset,n) -> do burn (g_verylow + g_copy * ceilDiv (num n) 32) $ accessUnboundedMemoryRange fees memOffset n $ do next assign (state . stack) xs copyBytesToMemory (the state code) n codeOffset memOffset _ -> underrun -- op: GASPRICE 0x3a -> limitStack 1 . burn g_base $ next >> push (the tx gasprice) -- op: EXTCODESIZE 0x3b -> case stk of (x':xs) -> makeUnique x' $ \x -> if x == num cheatCode then do next assign (state . stack) xs push (w256 1) else accessAndBurn (num x) $ fetchAccount (num x) $ \c -> do next assign (state . stack) xs push (num (len (view bytecode c))) [] -> underrun -- op: EXTCODECOPY 0x3c -> case stk of ( extAccount' : memOffset' : codeOffset' : codeSize' : xs ) -> forceConcrete4 (extAccount', memOffset', codeOffset', codeSize') $ \(extAccount, memOffset, codeOffset, codeSize) -> do acc <- accessAccountForGas (num extAccount) let cost = if acc then g_warm_storage_read else g_cold_account_access burn (cost + g_copy * ceilDiv (num codeSize) 32) $ accessUnboundedMemoryRange fees memOffset codeSize $ fetchAccount (num extAccount) $ \c -> do next assign (state . stack) xs copyBytesToMemory (view bytecode c) codeSize codeOffset memOffset _ -> underrun -- op: RETURNDATASIZE 0x3d -> limitStack 1 . burn g_base $ next >> push (num $ len (the state returndata)) -- op: RETURNDATACOPY 0x3e -> case stk of (xTo' : xFrom' : xSize' :xs) -> forceConcrete3 (xTo', xFrom', xSize') $ \(xTo, xFrom, xSize) -> burn (g_verylow + g_copy * ceilDiv (num xSize) 32) $ accessUnboundedMemoryRange fees xTo xSize $ do next assign (state . stack) xs if num (len (the state returndata)) < xFrom + xSize || xFrom + xSize < xFrom then vmError InvalidMemoryAccess else copyBytesToMemory (the state returndata) xSize xFrom xTo _ -> underrun -- op: EXTCODEHASH 0x3f -> case stk of (x':xs) -> forceConcrete x' $ \x -> accessAndBurn (num x) $ do next assign (state . stack) xs fetchAccount (num x) $ \c -> if accountEmpty c then push (num (0 :: Int)) else case view bytecode c of ConcreteBuffer b -> push (num (keccak b)) b'@(SymbolicBuffer b) -> pushSym (S (FromKeccak b') $ symkeccak' b) [] -> underrun -- op: BLOCKHASH 0x40 -> do -- We adopt the fake block hash scheme of the VMTests, -- so that blockhash(i) is the hash of i as decimal ASCII. stackOp1 (const g_blockhash) $ \(forceLit -> i) -> if i + 256 < the block number || i >= the block number then 0 else (num i :: Integer) & show & Char8.pack & keccak & num -- op: COINBASE 0x41 -> limitStack 1 . burn g_base $ next >> push (num (the block coinbase)) -- op: TIMESTAMP 0x42 -> limitStack 1 . burn g_base $ next >> pushSym (the block timestamp) -- op: NUMBER 0x43 -> limitStack 1 . burn g_base $ next >> push (the block number) -- op: DIFFICULTY 0x44 -> limitStack 1 . burn g_base $ next >> push (the block difficulty) -- op: GASLIMIT 0x45 -> limitStack 1 . burn g_base $ next >> push (the block gaslimit) -- op: CHAINID 0x46 -> limitStack 1 . burn g_base $ next >> push (the env chainId) -- op: SELFBALANCE 0x47 -> limitStack 1 . burn g_low $ next >> push (view balance this) -- op: BASEFEE 0x48 -> limitStack 1 . burn g_base $ next >> push (the block baseFee) -- op: POP 0x50 -> case stk of (_:xs) -> burn g_base (next >> assign (state . stack) xs) _ -> underrun -- op: MLOAD 0x51 -> case stk of (x':xs) -> forceConcrete x' $ \x -> burn g_verylow $ accessMemoryWord fees x $ do next assign (state . stack) (view (word256At (num x)) mem : xs) _ -> underrun -- op: MSTORE 0x52 -> case stk of (x':y:xs) -> forceConcrete x' $ \x -> burn g_verylow $ accessMemoryWord fees x $ do next assign (state . memory . word256At (num x)) y assign (state . stack) xs _ -> underrun -- op: MSTORE8 0x53 -> case stk of (x':(S _ y):xs) -> forceConcrete x' $ \x -> burn g_verylow $ accessMemoryRange fees x 1 $ do let yByte = bvExtract (Proxy :: Proxy 7) (Proxy :: Proxy 0) y next modifying (state . memory) (setMemoryByte x yByte) assign (state . stack) xs _ -> underrun -- op: SLOAD 0x54 -> case stk of (x:xs) -> do acc <- accessStorageForGas self x let cost = if acc then g_warm_storage_read else g_cold_sload burn cost $ accessStorage self x $ \y -> do next assign (state . stack) (y:xs) _ -> underrun -- op: SSTORE 0x55 -> notStatic $ case stk of (x:new:xs) -> accessStorage self x $ \current -> do availableGas <- use (state . gas) if num availableGas <= g_callstipend then finishFrame (FrameErrored (OutOfGas availableGas (num g_callstipend))) else do let original = case view storage this of Concrete _ -> fromMaybe 0 (Map.lookup (forceLit x) (view origStorage this)) Symbolic _ _ -> 0 -- we don't use this value anywhere anyway storage_cost = case (maybeLitWord current, maybeLitWord new) of (Just current', Just new') -> if (current' == new') then g_sload else if (current' == original) && (original == 0) then g_sset else if (current' == original) then g_sreset else g_sload -- if any of the arguments are symbolic, -- assume worst case scenario _ -> g_sset acc <- accessStorageForGas self x let cold_storage_cost = if acc then 0 else g_cold_sload burn (storage_cost + cold_storage_cost) $ do next assign (state . stack) xs modifying (env . contracts . ix self . storage) (writeStorage x new) case (maybeLitWord current, maybeLitWord new) of (Just current', Just new') -> unless (current' == new') $ if current' == original then when (original /= 0 && new' == 0) $ refund (g_sreset + g_access_list_storage_key) else do when (original /= 0) $ if new' == 0 then refund (g_sreset + g_access_list_storage_key) else unRefund (g_sreset + g_access_list_storage_key) when (original == new') $ if original == 0 then refund (g_sset - g_sload) else refund (g_sreset - g_sload) -- if any of the arguments are symbolic, -- don't change the refund counter _ -> noop _ -> underrun -- op: JUMP 0x56 -> case stk of (x:xs) -> burn g_mid $ forceConcrete x $ \x' -> checkJump x' xs _ -> underrun -- op: JUMPI 0x57 -> do case stk of (x:y@(S w _):xs) -> forceConcrete x $ \x' -> burn g_high $ let jump :: Bool -> EVM () jump True = assign (state . stack) xs >> next jump _ = checkJump x' xs in case maybeLitWord y of Just y' -> jump (0 == y') -- if the jump condition is symbolic, an smt query has to be made. Nothing -> askSMT (self, the state pc) (0 .== y, IsZero w) jump _ -> underrun -- op: PC 0x58 -> limitStack 1 . burn g_base $ next >> push (num (the state pc)) -- op: MSIZE 0x59 -> limitStack 1 . burn g_base $ next >> push (num (the state memorySize)) -- op: GAS 0x5a -> limitStack 1 . burn g_base $ next >> push (the state gas - num g_base) -- op: JUMPDEST 0x5b -> burn g_jumpdest next -- op: EXP 0x0a -> let cost (_ ,(forceLit -> exponent)) = if exponent == 0 then g_exp else g_exp + g_expbyte * num (ceilDiv (1 + log2 exponent) 8) in stackOp2 cost $ \((S a x),(S b y)) -> S (Exp a b) (x .^ y) -- op: SIGNEXTEND 0x0b -> stackOp2 (const g_low) $ \((forceLit -> bytes), w@(S a x)) -> if bytes >= 32 then w else let n = num bytes * 8 + 7 in S (Todo "signextend" [a]) $ ite (sTestBit x n) (x .|. complement (bit n - 1)) (x .&. (bit n - 1)) -- op: CREATE 0xf0 -> notStatic $ case stk of (xValue' : xOffset' : xSize' : xs) -> forceConcrete3 (xValue', xOffset', xSize') $ \(xValue, xOffset, xSize) -> do accessMemoryRange fees xOffset xSize $ do availableGas <- use (state . gas) let newAddr = createAddress self (wordValue (view nonce this)) (cost, gas') = costOfCreate fees availableGas 0 _ <- accessAccountForGas newAddr burn (cost - gas') $ let initCode = readMemory (num xOffset) (num xSize) vm in create self this (num gas') xValue xs newAddr initCode _ -> underrun -- op: CALL 0xf1 -> case stk of ( xGas' : S _ xTo : (forceLit -> xValue) : xInOffset' : xInSize' : xOutOffset' : xOutSize' : xs ) -> forceConcrete5 (xGas',xInOffset', xInSize', xOutOffset', xOutSize') $ \(xGas, xInOffset, xInSize, xOutOffset, xOutSize) -> (if xValue > 0 then notStatic else id) $ let target = SAddr $ sFromIntegral xTo in delegateCall this xGas target target xValue xInOffset xInSize xOutOffset xOutSize xs $ \callee -> do zoom state $ do assign callvalue (litWord xValue) assign caller (litAddr self) assign contract callee transfer self callee xValue touchAccount self touchAccount callee _ -> underrun -- op: CALLCODE 0xf2 -> case stk of ( xGas' : S _ xTo' : (forceLit -> xValue) : xInOffset' : xInSize' : xOutOffset' : xOutSize' : xs ) -> forceConcrete5 (xGas', xInOffset', xInSize', xOutOffset', xOutSize') $ \(xGas, xInOffset, xInSize, xOutOffset, xOutSize) -> let target = SAddr $ sFromIntegral xTo' in delegateCall this xGas target (litAddr self) xValue xInOffset xInSize xOutOffset xOutSize xs $ \_ -> do zoom state $ do assign callvalue (litWord xValue) assign caller (litAddr self) touchAccount self _ -> underrun -- op: RETURN 0xf3 -> case stk of (xOffset' : xSize' :_) -> forceConcrete2 (xOffset', xSize') $ \(xOffset, xSize) -> accessMemoryRange fees xOffset xSize $ do let output = readMemory xOffset xSize vm codesize = num (len output) maxsize = the block maxCodeSize creation = case view frames vm of [] -> the tx isCreate frame:_ -> case view frameContext frame of CreationContext {} -> True CallContext {} -> False if creation then if codesize > maxsize then finishFrame (FrameErrored (MaxCodeSizeExceeded maxsize codesize)) else if isConcretely (readByteOrZero 0 output) ((==) 0xef) then finishFrame $ FrameErrored InvalidFormat else do burn (g_codedeposit * num codesize) $ finishFrame (FrameReturned output) else finishFrame (FrameReturned output) _ -> underrun -- op: DELEGATECALL 0xf4 -> case stk of (xGas' :S _ xTo :xInOffset' :xInSize' :xOutOffset' :xOutSize' :xs) -> forceConcrete5 (xGas', xInOffset', xInSize', xOutOffset', xOutSize') $ \(xGas, xInOffset, xInSize, xOutOffset, xOutSize) -> let target = SAddr $ sFromIntegral xTo in delegateCall this xGas target (litAddr self) 0 xInOffset xInSize xOutOffset xOutSize xs $ \_ -> do touchAccount self _ -> underrun -- op: CREATE2 0xf5 -> notStatic $ case stk of (xValue' :xOffset' :xSize' :xSalt' :xs) -> forceConcrete4 (xValue', xOffset', xSize', xSalt') $ \(xValue, xOffset, xSize, xSalt) -> accessMemoryRange fees xOffset xSize $ do availableGas <- use (state . gas) forceConcreteBuffer (readMemory (num xOffset) (num xSize) vm) $ \initCode -> do let newAddr = create2Address self (num xSalt) initCode (cost, gas') = costOfCreate fees availableGas xSize _ <- accessAccountForGas newAddr burn (cost - gas') $ create self this (num gas') xValue xs newAddr (ConcreteBuffer initCode) _ -> underrun -- op: STATICCALL 0xfa -> case stk of (xGas' :S _ xTo :xInOffset' :xInSize' :xOutOffset' :xOutSize' :xs) -> forceConcrete5 (xGas', xInOffset', xInSize', xOutOffset', xOutSize') $ \(xGas, xInOffset, xInSize, xOutOffset, xOutSize) -> do let target = SAddr $ sFromIntegral xTo delegateCall this xGas target target 0 xInOffset xInSize xOutOffset xOutSize xs $ \callee -> do zoom state $ do assign callvalue 0 assign caller (litAddr self) assign contract callee assign static True touchAccount self touchAccount callee _ -> underrun -- op: SELFDESTRUCT 0xff -> notStatic $ case stk of [] -> underrun (xTo':_) -> forceConcrete xTo' $ \(num -> xTo) -> do acc <- accessAccountForGas (num xTo) let cost = if acc then 0 else g_cold_account_access funds = view balance this recipientExists = accountExists xTo vm c_new = if not recipientExists && funds /= 0 then num g_selfdestruct_newaccount else 0 burn (g_selfdestruct + c_new + cost) $ do selfdestruct self touchAccount xTo if funds /= 0 then fetchAccount xTo $ \_ -> do env . contracts . ix xTo . balance += funds assign (env . contracts . ix self . balance) 0 doStop else doStop -- op: REVERT 0xfd -> case stk of (xOffset':xSize':_) -> forceConcrete2 (xOffset', xSize') $ \(xOffset, xSize) -> accessMemoryRange fees xOffset xSize $ do let output = readMemory xOffset xSize vm finishFrame (FrameReverted output) _ -> underrun xxx -> vmError (UnrecognizedOpcode xxx) transfer :: Addr -> Addr -> Word -> EVM () transfer xFrom xTo xValue = zoom (env . contracts) $ do ix xFrom . balance -= xValue ix xTo . balance += xValue -- | Checks a *CALL for failure; OOG, too many callframes, memory access etc. callChecks :: (?op :: Word8) => Contract -> Word -> Addr -> Addr -> Word -> Word -> Word -> Word -> Word -> [SymWord] -- continuation with gas available for call -> (Integer -> EVM ()) -> EVM () callChecks this xGas xContext xTo xValue xInOffset xInSize xOutOffset xOutSize xs continue = do vm <- get let fees = view (block . schedule) vm accessMemoryRange fees xInOffset xInSize $ accessMemoryRange fees xOutOffset xOutSize $ do availableGas <- use (state . gas) let recipientExists = accountExists xContext vm (cost, gas') <- costOfCall fees recipientExists xValue availableGas xGas xTo burn (cost - gas') $ do if xValue > view balance this then do assign (state . stack) (0 : xs) assign (state . returndata) mempty pushTrace $ ErrorTrace $ BalanceTooLow xValue (view balance this) next else if length (view frames vm) >= 1024 then do assign (state . stack) (0 : xs) assign (state . returndata) mempty pushTrace $ ErrorTrace CallDepthLimitReached next else continue gas' precompiledContract :: (?op :: Word8) => Contract -> Word -> Addr -> Addr -> Word -> Word -> Word -> Word -> Word -> [SymWord] -> EVM () precompiledContract this xGas precompileAddr recipient xValue inOffset inSize outOffset outSize xs = callChecks this xGas recipient precompileAddr xValue inOffset inSize outOffset outSize xs $ \gas' -> do executePrecompile precompileAddr gas' inOffset inSize outOffset outSize xs self <- use (state . contract) stk <- use (state . stack) case stk of (x:_) -> case maybeLitWord x of Just 0 -> return () Just 1 -> fetchAccount recipient $ \_ -> do transfer self recipient xValue touchAccount self touchAccount recipient _ -> vmError UnexpectedSymbolicArg _ -> underrun executePrecompile :: (?op :: Word8) => Addr -> Integer -> Word -> Word -> Word -> Word -> [SymWord] -> EVM () executePrecompile preCompileAddr gasCap inOffset inSize outOffset outSize xs = do vm <- get let input = readMemory (num inOffset) (num inSize) vm fees = view (block . schedule) vm cost = costOfPrecompile fees preCompileAddr input notImplemented = error $ "precompile at address " <> show preCompileAddr <> " not yet implemented" precompileFail = burn (num gasCap - cost) $ do assign (state . stack) (0 : xs) pushTrace $ ErrorTrace PrecompileFailure next if cost > num gasCap then burn (num gasCap) $ do assign (state . stack) (0 : xs) next else burn cost $ case preCompileAddr of -- ECRECOVER 0x1 -> -- TODO: support symbolic variant forceConcreteBuffer input $ \input' -> case EVM.Precompiled.execute 0x1 (truncpadlit 128 input') 32 of Nothing -> do -- return no output for invalid signature assign (state . stack) (1 : xs) assign (state . returndata) mempty next Just output -> do assign (state . stack) (1 : xs) assign (state . returndata) (ConcreteBuffer output) copyBytesToMemory (ConcreteBuffer output) outSize 0 outOffset next -- SHA2-256 0x2 -> let hash = case input of ConcreteBuffer input' -> ConcreteBuffer $ BS.pack $ BA.unpack (Crypto.hash input' :: Digest SHA256) SymbolicBuffer input' -> SymbolicBuffer $ symSHA256 input' in do assign (state . stack) (1 : xs) assign (state . returndata) hash copyBytesToMemory hash outSize 0 outOffset next -- RIPEMD-160 0x3 -> -- TODO: support symbolic variant forceConcreteBuffer input $ \input' -> let padding = BS.pack $ replicate 12 0 hash' = BS.pack $ BA.unpack (Crypto.hash input' :: Digest RIPEMD160) hash = ConcreteBuffer $ padding <> hash' in do assign (state . stack) (1 : xs) assign (state . returndata) hash copyBytesToMemory hash outSize 0 outOffset next -- IDENTITY 0x4 -> do assign (state . stack) (1 : xs) assign (state . returndata) input copyCallBytesToMemory input outSize 0 outOffset next -- MODEXP 0x5 -> -- TODO: support symbolic variant forceConcreteBuffer input $ \input' -> let (lenb, lene, lenm) = parseModexpLength input' output = ConcreteBuffer $ if isZero (96 + lenb + lene) lenm input' then truncpadlit (num lenm) (asBE (0 :: Int)) else let b = asInteger $ lazySlice 96 lenb input' e = asInteger $ lazySlice (96 + lenb) lene input' m = asInteger $ lazySlice (96 + lenb + lene) lenm input' in padLeft (num lenm) (asBE (expFast b e m)) in do assign (state . stack) (1 : xs) assign (state . returndata) output copyBytesToMemory output outSize 0 outOffset next -- ECADD 0x6 -> -- TODO: support symbolic variant forceConcreteBuffer input $ \input' -> case EVM.Precompiled.execute 0x6 (truncpadlit 128 input') 64 of Nothing -> precompileFail Just output -> do let truncpaddedOutput = ConcreteBuffer $ truncpadlit 64 output assign (state . stack) (1 : xs) assign (state . returndata) truncpaddedOutput copyBytesToMemory truncpaddedOutput outSize 0 outOffset next -- ECMUL 0x7 -> -- TODO: support symbolic variant forceConcreteBuffer input $ \input' -> case EVM.Precompiled.execute 0x7 (truncpadlit 96 input') 64 of Nothing -> precompileFail Just output -> do let truncpaddedOutput = ConcreteBuffer $ truncpadlit 64 output assign (state . stack) (1 : xs) assign (state . returndata) truncpaddedOutput copyBytesToMemory truncpaddedOutput outSize 0 outOffset next -- ECPAIRING 0x8 -> -- TODO: support symbolic variant forceConcreteBuffer input $ \input' -> case EVM.Precompiled.execute 0x8 input' 32 of Nothing -> precompileFail Just output -> do let truncpaddedOutput = ConcreteBuffer $ truncpadlit 32 output assign (state . stack) (1 : xs) assign (state . returndata) truncpaddedOutput copyBytesToMemory truncpaddedOutput outSize 0 outOffset next -- BLAKE2 0x9 -> -- TODO: support symbolic variant forceConcreteBuffer input $ \input' -> do case (BS.length input', 1 >= BS.last input') of (213, True) -> case EVM.Precompiled.execute 0x9 input' 64 of Just output -> do let truncpaddedOutput = ConcreteBuffer $ truncpadlit 64 output assign (state . stack) (1 : xs) assign (state . returndata) truncpaddedOutput copyBytesToMemory truncpaddedOutput outSize 0 outOffset next Nothing -> precompileFail _ -> precompileFail _ -> notImplemented truncpadlit :: Int -> ByteString -> ByteString truncpadlit n xs = if m > n then BS.take n xs else BS.append xs (BS.replicate (n - m) 0) where m = BS.length xs lazySlice :: Word -> Word -> ByteString -> LS.ByteString lazySlice offset size bs = let bs' = LS.take (num size) (LS.drop (num offset) (fromStrict bs)) in bs' <> LS.replicate ((num size) - LS.length bs') 0 parseModexpLength :: ByteString -> (Word, Word, Word) parseModexpLength input = let lenb = w256 $ word $ LS.toStrict $ lazySlice 0 32 input lene = w256 $ word $ LS.toStrict $ lazySlice 32 64 input lenm = w256 $ word $ LS.toStrict $ lazySlice 64 96 input in (lenb, lene, lenm) --- checks if a range of ByteString bs starting at offset and length size is all zeros. isZero :: Word -> Word -> ByteString -> Bool isZero offset size bs = LS.all (== 0) $ LS.take (num size) $ LS.drop (num offset) $ fromStrict bs asInteger :: LS.ByteString -> Integer asInteger xs = if xs == mempty then 0 else 256 * asInteger (LS.init xs) + num (LS.last xs) -- * Opcode helper actions noop :: Monad m => m () noop = pure () pushTo :: MonadState s m => ASetter s s [a] [a] -> a -> m () pushTo f x = f %= (x :) pushToSequence :: MonadState s m => ASetter s s (Seq a) (Seq a) -> a -> m () pushToSequence f x = f %= (Seq.|> x) getCodeLocation :: VM -> CodeLocation getCodeLocation vm = (view (state . contract) vm, view (state . pc) vm) -- | Ask the SMT solver to provide a concrete model for val iff a unique model exists makeUnique :: SymWord -> (Word -> EVM ()) -> EVM () makeUnique sw@(S w val) cont = case maybeLitWord sw of Nothing -> do conditions <- use constraints assign result . Just . VMFailure . Query $ PleaseMakeUnique val (fst <$> conditions) $ \case Unique a -> do assign result Nothing cont (C w $ fromSizzle a) InconsistentU -> vmError DeadPath TimeoutU -> vmError SMTTimeout Multiple -> vmError $ NotUnique w Just a -> cont a -- | Construct SMT Query and halt execution until resolved askSMT :: CodeLocation -> (SBool, Whiff) -> (Bool -> EVM ()) -> EVM () askSMT codeloc (condition, whiff) continue = do -- We keep track of how many times we have come across this particular -- (contract, pc) combination in the `iteration` mapping. iteration <- use (iterations . at codeloc . non 0) -- If we are backstepping, the result of this query should be cached -- already. So we first check the cache to see if the result is known use (cache . path . at (codeloc, iteration)) >>= \case -- If the query has been done already, select path or select the only available Just w -> choosePath (Case w) -- If this is a new query, run the query, cache the result -- increment the iterations and select appropriate path Nothing -> do pathconds <- use constraints assign result . Just . VMFailure . Query $ PleaseAskSMT condition' (fst <$> pathconds) choosePath where condition' = simplifyCondition condition whiff choosePath :: BranchCondition -> EVM () -- Only one path is possible choosePath (Case v) = do assign result Nothing pushTo constraints $ if v then (condition', whiff) else (sNot condition', IsZero whiff) iteration <- use (iterations . at codeloc . non 0) assign (cache . path . at (codeloc, iteration)) (Just v) assign (iterations . at codeloc) (Just (iteration + 1)) continue v -- Both paths are possible; we ask for more input choosePath Unknown = assign result . Just . VMFailure . Choose . PleaseChoosePath whiff $ choosePath . Case -- None of the paths are possible; fail this branch choosePath Inconsistent = vmError DeadPath -- | Construct RPC Query and halt execution until resolved fetchAccount :: Addr -> (Contract -> EVM ()) -> EVM () fetchAccount addr continue = use (env . contracts . at addr) >>= \case Just c -> continue c Nothing -> use (cache . fetched . at addr) >>= \case Just c -> do assign (env . contracts . at addr) (Just c) continue c Nothing -> do model <- use (env . storageModel) assign result . Just . VMFailure $ Query $ PleaseFetchContract addr model (\c -> do assign (cache . fetched . at addr) (Just c) assign (env . contracts . at addr) (Just c) assign result Nothing continue c) readStorage :: Storage -> SymWord -> Maybe (SymWord) readStorage (Symbolic _ s) (S w loc) = Just $ S (FromStorage w s) $ readArray s loc readStorage (Concrete s) loc = Map.lookup (forceLit loc) s writeStorage :: SymWord -> SymWord -> Storage -> Storage writeStorage k@(S _ loc) v@(S _ val) (Symbolic xs s) = Symbolic ((k,v):xs) (writeArray s loc val) writeStorage loc val (Concrete s) = Concrete (Map.insert (forceLit loc) val s) accessStorage :: Addr -- ^ Contract address -> SymWord -- ^ Storage slot key -> (SymWord -> EVM ()) -- ^ Continuation -> EVM () accessStorage addr slot continue = use (env . contracts . at addr) >>= \case Just c -> case readStorage (view storage c) slot of -- Notice that if storage is symbolic, we always continue straight away Just x -> continue x Nothing -> if view external c then -- check if the slot is cached use (cache . fetched . at addr) >>= \case Nothing -> mkQuery Just cachedContract -> maybe mkQuery continue (readStorage (view storage cachedContract) slot) else do modifying (env . contracts . ix addr . storage) (writeStorage slot 0) continue 0 Nothing -> fetchAccount addr $ \_ -> accessStorage addr slot continue where mkQuery = assign result . Just . VMFailure . Query $ PleaseFetchSlot addr (forceLit slot) (\(litWord -> x) -> do modifying (cache . fetched . ix addr . storage) (writeStorage slot x) modifying (env . contracts . ix addr . storage) (writeStorage slot x) assign result Nothing continue x) accountExists :: Addr -> VM -> Bool accountExists addr vm = case view (env . contracts . at addr) vm of Just c -> not (accountEmpty c) Nothing -> False -- EIP 161 accountEmpty :: Contract -> Bool accountEmpty c = case view contractcode c of RuntimeCode b -> len b == 0 _ -> False && (view nonce c == 0) && (view balance c == 0) -- * How to finalize a transaction finalize :: EVM () finalize = do let revertContracts = use (tx . txReversion) >>= assign (env . contracts) revertSubstate = assign (tx . substate) (SubState mempty mempty mempty mempty mempty) use result >>= \case Nothing -> error "Finalising an unfinished tx." Just (VMFailure (Revert _)) -> do revertContracts revertSubstate Just (VMFailure _) -> do -- burn remaining gas assign (state . gas) 0 revertContracts revertSubstate Just (VMSuccess output) -> do -- deposit the code from a creation tx creation <- use (tx . isCreate) createe <- use (state . contract) createeExists <- (Map.member createe) <$> use (env . contracts) when (creation && createeExists) $ replaceCode createe (RuntimeCode output) -- compute and pay the refund to the caller and the -- corresponding payment to the miner txOrigin <- use (tx . origin) sumRefunds <- (sum . (snd <$>)) <$> (use (tx . substate . refunds)) miner <- use (block . coinbase) blockReward <- num . r_block <$> (use (block . schedule)) gasPrice <- use (tx . gasprice) priorityFee <- use (tx . txPriorityFee) gasLimit <- use (tx . txgaslimit) gasRemaining <- use (state . gas) let gasUsed = gasLimit - gasRemaining cappedRefund = min (quot gasUsed 5) (num sumRefunds) originPay = (gasRemaining + cappedRefund) * gasPrice minerPay = priorityFee * gasUsed modifying (env . contracts) (Map.adjust (over balance (+ originPay)) txOrigin) modifying (env . contracts) (Map.adjust (over balance (+ minerPay)) miner) touchAccount miner -- pay out the block reward, recreating the miner if necessary preuse (env . contracts . ix miner) >>= \case Nothing -> modifying (env . contracts) (Map.insert miner (initialContract (EVM.RuntimeCode mempty))) Just _ -> noop modifying (env . contracts) (Map.adjust (over balance (+ blockReward)) miner) -- perform state trie clearing (EIP 161), of selfdestructs -- and touched accounts. addresses are cleared if they have -- a) selfdestructed, or -- b) been touched and -- c) are empty. -- (see Yellow Paper "Accrued Substate") -- -- remove any destructed addresses destroyedAddresses <- use (tx . substate . selfdestructs) modifying (env . contracts) (Map.filterWithKey (\k _ -> (notElem k destroyedAddresses))) -- then, clear any remaining empty and touched addresses touchedAddresses <- use (tx . substate . touchedAccounts) modifying (env . contracts) (Map.filterWithKey (\k a -> not ((elem k touchedAddresses) && accountEmpty a))) -- | Loads the selected contract as the current contract to execute loadContract :: Addr -> EVM () loadContract target = preuse (env . contracts . ix target . contractcode) >>= \case Nothing -> error "Call target doesn't exist" Just (InitCode targetCode) -> do assign (state . contract) target assign (state . code) targetCode assign (state . codeContract) target Just (RuntimeCode targetCode) -> do assign (state . contract) target assign (state . code) targetCode assign (state . codeContract) target limitStack :: Int -> EVM () -> EVM () limitStack n continue = do stk <- use (state . stack) if length stk + n > 1024 then vmError StackLimitExceeded else continue notStatic :: EVM () -> EVM () notStatic continue = do bad <- use (state . static) if bad then vmError StateChangeWhileStatic else continue -- | Burn gas, failing if insufficient gas is available -- We use the `Integer` type to avoid overflows in intermediate -- calculations and throw if the value won't fit into a uint64 burn :: Integer -> EVM () -> EVM () burn n' continue = if n' > (2 :: Integer) ^ (64 :: Integer) - 1 then vmError IllegalOverflow else do let n = num n' available <- use (state . gas) if n <= available then do state . gas -= n burned += n continue else vmError (OutOfGas available n) forceConcreteAddr :: SAddr -> (Addr -> EVM ()) -> EVM () forceConcreteAddr n continue = case maybeLitAddr n of Nothing -> vmError UnexpectedSymbolicArg Just c -> continue c forceConcrete :: SymWord -> (Word -> EVM ()) -> EVM () forceConcrete n continue = case maybeLitWord n of Nothing -> vmError UnexpectedSymbolicArg Just c -> continue c forceConcrete2 :: (SymWord, SymWord) -> ((Word, Word) -> EVM ()) -> EVM () forceConcrete2 (n,m) continue = case (maybeLitWord n, maybeLitWord m) of (Just c, Just d) -> continue (c, d) _ -> vmError UnexpectedSymbolicArg forceConcrete3 :: (SymWord, SymWord, SymWord) -> ((Word, Word, Word) -> EVM ()) -> EVM () forceConcrete3 (k,n,m) continue = case (maybeLitWord k, maybeLitWord n, maybeLitWord m) of (Just c, Just d, Just f) -> continue (c, d, f) _ -> vmError UnexpectedSymbolicArg forceConcrete4 :: (SymWord, SymWord, SymWord, SymWord) -> ((Word, Word, Word, Word) -> EVM ()) -> EVM () forceConcrete4 (k,l,n,m) continue = case (maybeLitWord k, maybeLitWord l, maybeLitWord n, maybeLitWord m) of (Just b, Just c, Just d, Just f) -> continue (b, c, d, f) _ -> vmError UnexpectedSymbolicArg forceConcrete5 :: (SymWord, SymWord, SymWord, SymWord, SymWord) -> ((Word, Word, Word, Word, Word) -> EVM ()) -> EVM () forceConcrete5 (k,l,m,n,o) continue = case (maybeLitWord k, maybeLitWord l, maybeLitWord m, maybeLitWord n, maybeLitWord o) of (Just a, Just b, Just c, Just d, Just e) -> continue (a, b, c, d, e) _ -> vmError UnexpectedSymbolicArg forceConcrete6 :: (SymWord, SymWord, SymWord, SymWord, SymWord, SymWord) -> ((Word, Word, Word, Word, Word, Word) -> EVM ()) -> EVM () forceConcrete6 (k,l,m,n,o,p) continue = case (maybeLitWord k, maybeLitWord l, maybeLitWord m, maybeLitWord n, maybeLitWord o, maybeLitWord p) of (Just a, Just b, Just c, Just d, Just e, Just f) -> continue (a, b, c, d, e, f) _ -> vmError UnexpectedSymbolicArg forceConcreteBuffer :: Buffer -> (ByteString -> EVM ()) -> EVM () forceConcreteBuffer (SymbolicBuffer b) continue = case maybeLitBytes b of Nothing -> vmError UnexpectedSymbolicArg Just bs -> continue bs forceConcreteBuffer (ConcreteBuffer b) continue = continue b -- * Substate manipulation refund :: Integer -> EVM () refund n = do self <- use (state . contract) pushTo (tx . substate . refunds) (self, n) unRefund :: Integer -> EVM () unRefund n = do self <- use (state . contract) refs <- use (tx . substate . refunds) assign (tx . substate . refunds) (filter (\(a,b) -> not (a == self && b == n)) refs) touchAccount :: Addr -> EVM() touchAccount = pushTo ((tx . substate) . touchedAccounts) selfdestruct :: Addr -> EVM() selfdestruct = pushTo ((tx . substate) . selfdestructs) accessAndBurn :: Addr -> EVM () -> EVM () accessAndBurn x cont = do FeeSchedule {..} <- use ( block . schedule ) acc <- accessAccountForGas x let cost = if acc then g_warm_storage_read else g_cold_account_access burn cost cont -- | returns a wrapped boolean- if true, this address has been touched before in the txn (warm gas cost as in EIP 2929) -- otherwise cold accessAccountForGas :: Addr -> EVM Bool accessAccountForGas addr = do accessedAddrs <- use (tx . substate . accessedAddresses) let accessed = member addr accessedAddrs assign (tx . substate . accessedAddresses) (insert addr accessedAddrs) return accessed -- | returns a wrapped boolean- if true, this slot has been touched before in the txn (warm gas cost as in EIP 2929) -- otherwise cold accessStorageForGas :: Addr -> SymWord -> EVM Bool accessStorageForGas addr key = do accessedStrkeys <- use (tx . substate . accessedStorageKeys) case maybeLitWord key of Just litword -> do let litword256 = wordValue litword let accessed = member (addr, litword256) accessedStrkeys assign (tx . substate . accessedStorageKeys) (insert (addr, litword256) accessedStrkeys) return accessed _ -> return False -- * Cheat codes -- The cheat code is 7109709ecfa91a80626ff3989d68f67f5b1dd12d. -- Call this address using one of the cheatActions below to do -- special things, e.g. changing the block timestamp. Beware that -- these are necessarily hevm specific. cheatCode :: Addr cheatCode = num (keccak "hevm cheat code") cheat :: (?op :: Word8) => (Word, Word) -> (Word, Word) -> EVM () cheat (inOffset, inSize) (outOffset, outSize) = do mem <- use (state . memory) vm <- get let abi = readMemoryWord32 inOffset mem input = readMemory (inOffset + 4) (inSize - 4) vm case fromSized <$> unliteral abi of Nothing -> vmError UnexpectedSymbolicArg Just abi' -> case Map.lookup abi' cheatActions of Nothing -> vmError (BadCheatCode (Just abi')) Just action -> do action outOffset outSize input next push 1 type CheatAction = Word -> Word -> Buffer -> EVM () cheatActions :: Map Word32 CheatAction cheatActions = Map.fromList [ action "ffi(string[])" $ \sig outOffset outSize input -> do vm <- get if view EVM.allowFFI vm then case decodeBuffer [AbiArrayDynamicType AbiStringType] input of CAbi valsArr -> case valsArr of [AbiArrayDynamic AbiStringType strsV] -> let cmd = (flip fmap) (V.toList strsV) (\case (AbiString a) -> unpack $ decodeUtf8 a _ -> "") cont bs = do let encoded = ConcreteBuffer bs assign (state . returndata) encoded copyBytesToMemory encoded outSize 0 outOffset assign result Nothing in assign result (Just . VMFailure . Query $ (PleaseDoFFI cmd cont)) _ -> vmError (BadCheatCode sig) _ -> vmError (BadCheatCode sig) else let msg = encodeUtf8 "ffi disabled: run again with --ffi if you want to allow tests to call external scripts" in vmError . Revert $ abiMethod "Error(string)" (AbiTuple . V.fromList $ [AbiString msg]), action "warp(uint256)" $ \sig _ _ input -> case decodeStaticArgs input of [x] -> assign (block . timestamp) x _ -> vmError (BadCheatCode sig), action "roll(uint256)" $ \sig _ _ input -> case decodeStaticArgs input of [x] -> forceConcrete x (assign (block . number)) _ -> vmError (BadCheatCode sig), action "store(address,bytes32,bytes32)" $ \sig _ _ input -> case decodeStaticArgs input of [a, slot, new] -> makeUnique a $ \(C _ (num -> a')) -> fetchAccount a' $ \_ -> do modifying (env . contracts . ix a' . storage) (writeStorage slot new) _ -> vmError (BadCheatCode sig), action "load(address,bytes32)" $ \sig outOffset _ input -> case decodeStaticArgs input of [a, slot] -> makeUnique a $ \(C _ (num -> a'))-> accessStorage a' slot $ \res -> do assign (state . returndata . word256At 0) res assign (state . memory . word256At outOffset) res _ -> vmError (BadCheatCode sig), action "sign(uint256,bytes32)" $ \sig outOffset _ input -> case decodeStaticArgs input of [sk, hash] -> forceConcrete sk $ \sk' -> forceConcrete hash $ \(C _ hash') -> let curve = getCurveByName SEC_p256k1 priv = PrivateKey curve (num sk') digest = digestFromByteString (word256Bytes hash') in do case digest of Nothing -> vmError (BadCheatCode sig) Just digest' -> do let s = ethsign priv digest' v = if (sign_s s) % 2 == 0 then 27 else 28 encoded = encodeAbiValue $ AbiTuple (RegularVector.fromList [ AbiUInt 8 v , AbiBytes 32 (word256Bytes . fromInteger $ sign_r s) , AbiBytes 32 (word256Bytes . fromInteger $ sign_s s) ]) assign (state . returndata) (ConcreteBuffer encoded) copyBytesToMemory (ConcreteBuffer encoded) (num . BS.length $ encoded) 0 outOffset _ -> vmError (BadCheatCode sig), action "addr(uint256)" $ \sig outOffset _ input -> case decodeStaticArgs input of [sk] -> forceConcrete sk $ \sk' -> let curve = getCurveByName SEC_p256k1 pubPoint = generateQ curve (num sk') encodeInt = encodeAbiValue . AbiUInt 256 . fromInteger in do case pubPoint of PointO -> do vmError (BadCheatCode sig) Point x y -> do -- See yellow paper #286 let pub = BS.concat [ encodeInt x, encodeInt y ] addr = w256lit . num . word256 . BS.drop 12 . BS.take 32 . keccakBytes $ pub assign (state . returndata . word256At 0) addr assign (state . memory . word256At outOffset) addr _ -> vmError (BadCheatCode sig) ] where action s f = (abiKeccak s, f (Just $ abiKeccak s)) -- | Hack deterministic signing, totally insecure... ethsign :: PrivateKey -> Digest Crypto.Keccak_256 -> Signature ethsign sk digest = go 420 where go k = case signDigestWith k sk digest of Nothing -> go (k + 1) Just sig -> sig -- * General call implementation ("delegateCall") -- note that the continuation is ignored in the precompile case delegateCall :: (?op :: Word8) => Contract -> Word -> SAddr -> SAddr -> Word -> Word -> Word -> Word -> Word -> [SymWord] -> (Addr -> EVM ()) -> EVM () delegateCall this gasGiven (SAddr xTo) (SAddr xContext) xValue xInOffset xInSize xOutOffset xOutSize xs continue = makeUnique (S (Todo "xTo" []) $ sFromIntegral xTo) $ \(C _ (num -> xTo')) -> makeUnique (S (Todo "xcontext" []) $ sFromIntegral xContext) $ \(C _ (num -> xContext')) -> if xTo' > 0 && xTo' <= 9 then precompiledContract this gasGiven xTo' xContext' xValue xInOffset xInSize xOutOffset xOutSize xs else if num xTo' == cheatCode then do assign (state . stack) xs cheat (xInOffset, xInSize) (xOutOffset, xOutSize) else callChecks this gasGiven xContext' xTo' xValue xInOffset xInSize xOutOffset xOutSize xs $ \xGas -> do vm0 <- get fetchAccount xTo' $ \target -> burn xGas $ do let newContext = CallContext { callContextTarget = xTo' , callContextContext = xContext' , callContextOffset = xOutOffset , callContextSize = xOutSize , callContextCodehash = view codehash target , callContextReversion = view (env . contracts) vm0 , callContextSubState = view (tx . substate) vm0 , callContextAbi = if xInSize >= 4 then case unliteral $ readMemoryWord32 xInOffset (view (state . memory) vm0) of Nothing -> Nothing Just abi -> Just . w256 $ num abi else Nothing , callContextData = (readMemory (num xInOffset) (num xInSize) vm0) } pushTrace (FrameTrace newContext) next vm1 <- get pushTo frames $ Frame { _frameState = (set stack xs) (view state vm1) , _frameContext = newContext } zoom state $ do assign gas (num xGas) assign pc 0 assign code (view bytecode target) assign codeContract xTo' assign stack mempty assign memory mempty assign memorySize 0 assign returndata mempty assign calldata (readMemory (num xInOffset) (num xInSize) vm0, w256lit (num xInSize)) continue xTo' -- -- * Contract creation -- EIP 684 collision :: Maybe Contract -> Bool collision c' = case c' of Just c -> (view nonce c /= 0) || case view contractcode c of RuntimeCode b -> len b /= 0 _ -> True Nothing -> False create :: (?op :: Word8) => Addr -> Contract -> Word -> Word -> [SymWord] -> Addr -> Buffer -> EVM () create self this xGas' xValue xs newAddr initCode = do vm0 <- get let xGas = num xGas' if xValue > view balance this then do assign (state . stack) (0 : xs) assign (state . returndata) mempty pushTrace $ ErrorTrace $ BalanceTooLow xValue (view balance this) next else if length (view frames vm0) >= 1024 then do assign (state . stack) (0 : xs) assign (state . returndata) mempty pushTrace $ ErrorTrace CallDepthLimitReached next else if collision $ view (env . contracts . at newAddr) vm0 then burn xGas $ do assign (state . stack) (0 : xs) modifying (env . contracts . ix self . nonce) succ next else burn xGas $ do touchAccount self touchAccount newAddr let store = case view (env . storageModel) vm0 of ConcreteS -> Concrete mempty SymbolicS -> Symbolic [] $ sListArray 0 [] InitialS -> Symbolic [] $ sListArray 0 [] newContract = initialContract (InitCode initCode) & set storage store newContext = CreationContext { creationContextAddress = newAddr , creationContextCodehash = view codehash newContract , creationContextReversion = view (env . contracts) vm0 , creationContextSubstate = view (tx . substate) vm0 } zoom (env . contracts) $ do oldAcc <- use (at newAddr) let oldBal = maybe 0 (view balance) oldAcc assign (at newAddr) (Just (newContract & balance .~ oldBal)) modifying (ix self . nonce) succ transfer self newAddr xValue pushTrace (FrameTrace newContext) next vm1 <- get pushTo frames $ Frame { _frameContext = newContext , _frameState = (set stack xs) (view state vm1) } assign state $ blankState & set contract newAddr & set codeContract newAddr & set code initCode & set callvalue (litWord xValue) & set caller (litAddr self) & set gas xGas' -- | Replace a contract's code, like when CREATE returns -- from the constructor code. replaceCode :: Addr -> ContractCode -> EVM () replaceCode target newCode = zoom (env . contracts . at target) $ get >>= \case Just now -> case (view contractcode now) of InitCode _ -> put . Just $ initialContract newCode & set storage (view storage now) & set balance (view balance now) & set nonce (view nonce now) RuntimeCode _ -> error ("internal error: can't replace code of deployed contract " <> show target) Nothing -> error "internal error: can't replace code of nonexistent contract" replaceCodeOfSelf :: ContractCode -> EVM () replaceCodeOfSelf newCode = do vm <- get replaceCode (view (state . contract) vm) newCode resetState :: EVM () resetState = do assign result Nothing assign frames [] assign state blankState -- * VM error implementation vmError :: Error -> EVM () vmError e = finishFrame (FrameErrored e) underrun :: EVM () underrun = vmError StackUnderrun -- | A stack frame can be popped in three ways. data FrameResult = FrameReturned Buffer -- ^ STOP, RETURN, or no more code | FrameReverted Buffer -- ^ REVERT | FrameErrored Error -- ^ Any other error deriving Show -- | This function defines how to pop the current stack frame in either of -- the ways specified by 'FrameResult'. -- -- It also handles the case when the current stack frame is the only one; -- in this case, we set the final '_result' of the VM execution. finishFrame :: FrameResult -> EVM () finishFrame how = do oldVm <- get case view frames oldVm of -- Is the current frame the only one? [] -> do case how of FrameReturned output -> assign result . Just $ VMSuccess output FrameReverted buffer -> forceConcreteBuffer buffer $ \out -> assign result . Just $ VMFailure (Revert out) FrameErrored e -> assign result . Just $ VMFailure e finalize -- Are there some remaining frames? nextFrame : remainingFrames -> do -- Insert a debug trace. insertTrace $ case how of FrameErrored e -> ErrorTrace e FrameReverted (ConcreteBuffer output) -> ErrorTrace (Revert output) FrameReverted (SymbolicBuffer output) -> ErrorTrace (Revert (forceLitBytes output)) FrameReturned output -> ReturnTrace output (view frameContext nextFrame) -- Pop to the previous level of the debug trace stack. popTrace -- Pop the top frame. assign frames remainingFrames -- Install the state of the frame to which we shall return. assign state (view frameState nextFrame) -- When entering a call, the gas allowance is counted as burned -- in advance; this unburns the remainder and adds it to the -- parent frame. let remainingGas = view (state . gas) oldVm reclaimRemainingGasAllowance = do modifying burned (subtract remainingGas) modifying (state . gas) (+ remainingGas) FeeSchedule {..} = view ( block . schedule ) oldVm -- Now dispatch on whether we were creating or calling, -- and whether we shall return, revert, or error (six cases). case view frameContext nextFrame of -- Were we calling? CallContext _ _ (num -> outOffset) (num -> outSize) _ _ _ reversion substate' -> do -- Excerpt K.1. from the yellow paper: -- K.1. Deletion of an Account Despite Out-of-gas. -- At block 2675119, in the transaction 0xcf416c536ec1a19ed1fb89e4ec7ffb3cf73aa413b3aa9b77d60e4fd81a4296ba, -- an account at address 0x03 was called and an out-of-gas occurred during the call. -- Against the equation (197), this added 0x03 in the set of touched addresses, and this transaction turned σ[0x03] into ∅. -- In other words, we special case address 0x03 and keep it in the set of touched accounts during revert touched <- use (tx . substate . touchedAccounts) let substate'' = over touchedAccounts (maybe id cons (find ((==) 3) touched)) substate' revertContracts = assign (env . contracts) reversion revertSubstate = assign (tx . substate) substate'' case how of -- Case 1: Returning from a call? FrameReturned output -> do assign (state . returndata) output copyCallBytesToMemory output outSize 0 outOffset reclaimRemainingGasAllowance push 1 -- Case 2: Reverting during a call? FrameReverted output -> do revertContracts revertSubstate assign (state . returndata) output copyCallBytesToMemory output outSize 0 outOffset reclaimRemainingGasAllowance push 0 -- Case 3: Error during a call? FrameErrored _ -> do revertContracts revertSubstate assign (state . returndata) mempty push 0 -- Or were we creating? CreationContext _ _ reversion substate' -> do creator <- use (state . contract) let createe = view (state . contract) oldVm revertContracts = assign (env . contracts) reversion' revertSubstate = assign (tx . substate) substate' -- persist the nonce through the reversion reversion' = (Map.adjust (over nonce (+ 1)) creator) reversion case how of -- Case 4: Returning during a creation? FrameReturned output -> do replaceCode createe (RuntimeCode output) assign (state . returndata) mempty reclaimRemainingGasAllowance push (num createe) -- Case 5: Reverting during a creation? FrameReverted output -> do revertContracts revertSubstate assign (state . returndata) output reclaimRemainingGasAllowance push 0 -- Case 6: Error during a creation? FrameErrored _ -> do revertContracts revertSubstate assign (state . returndata) mempty push 0 -- * Memory helpers accessUnboundedMemoryRange :: FeeSchedule Integer -> Word -> Word -> EVM () -> EVM () accessUnboundedMemoryRange _ _ 0 continue = continue accessUnboundedMemoryRange fees f l continue = do m0 <- num <$> use (state . memorySize) do let m1 = 32 * ceilDiv (max m0 (num f + num l)) 32 burn (memoryCost fees m1 - memoryCost fees m0) $ do assign (state . memorySize) (num m1) continue accessMemoryRange :: FeeSchedule Integer -> Word -> Word -> EVM () -> EVM () accessMemoryRange _ _ 0 continue = continue accessMemoryRange fees f l continue = if f + l < l then vmError IllegalOverflow else accessUnboundedMemoryRange fees f l continue accessMemoryWord :: FeeSchedule Integer -> Word -> EVM () -> EVM () accessMemoryWord fees x = accessMemoryRange fees x 32 copyBytesToMemory :: Buffer -> Word -> Word -> Word -> EVM () copyBytesToMemory bs size xOffset yOffset = if size == 0 then noop else do mem <- use (state . memory) assign (state . memory) $ writeMemory bs size xOffset yOffset mem copyCallBytesToMemory :: Buffer -> Word -> Word -> Word -> EVM () copyCallBytesToMemory bs size xOffset yOffset = if size == 0 then noop else do mem <- use (state . memory) assign (state . memory) $ writeMemory bs (min size (num (len bs))) xOffset yOffset mem readMemory :: Word -> Word -> VM -> Buffer readMemory offset size vm = sliceWithZero (num offset) (num size) (view (state . memory) vm) word256At :: Functor f => Word -> (SymWord -> f (SymWord)) -> Buffer -> f Buffer word256At i = lens getter setter where getter = EVM.Symbolic.readMemoryWord i setter m x = setMemoryWord i x m -- * Tracing withTraceLocation :: (MonadState VM m) => TraceData -> m Trace withTraceLocation x = do vm <- get let Just this = currentContract vm pure Trace { _traceData = x , _traceContract = this , _traceOpIx = fromMaybe 0 $ (view opIxMap this) Vector.!? (view (state . pc) vm) } pushTrace :: TraceData -> EVM () pushTrace x = do trace <- withTraceLocation x modifying traces $ \t -> Zipper.children $ Zipper.insert (Node trace []) t insertTrace :: TraceData -> EVM () insertTrace x = do trace <- withTraceLocation x modifying traces $ \t -> Zipper.nextSpace $ Zipper.insert (Node trace []) t popTrace :: EVM () popTrace = modifying traces $ \t -> case Zipper.parent t of Nothing -> error "internal error (trace root)" Just t' -> Zipper.nextSpace t' zipperRootForest :: Zipper.TreePos Zipper.Empty a -> Forest a zipperRootForest z = case Zipper.parent z of Nothing -> Zipper.toForest z Just z' -> zipperRootForest (Zipper.nextSpace z') traceForest :: VM -> Forest Trace traceForest = view (traces . to zipperRootForest) traceLog :: (MonadState VM m) => Log -> m () traceLog log = do trace <- withTraceLocation (EventTrace log) modifying traces $ \t -> Zipper.nextSpace (Zipper.insert (Node trace []) t) -- * Stack manipulation push :: Word -> EVM () push = pushSym . w256lit . num pushSym :: SymWord -> EVM () pushSym x = state . stack %= (x :) stackOp1 :: (?op :: Word8) => ((SymWord) -> Integer) -> ((SymWord) -> (SymWord)) -> EVM () stackOp1 cost f = use (state . stack) >>= \case (x:xs) -> burn (cost x) $ do next let !y = f x state . stack .= y : xs _ -> underrun stackOp2 :: (?op :: Word8) => (((SymWord), (SymWord)) -> Integer) -> (((SymWord), (SymWord)) -> (SymWord)) -> EVM () stackOp2 cost f = use (state . stack) >>= \case (x:y:xs) -> burn (cost (x, y)) $ do next state . stack .= f (x, y) : xs _ -> underrun stackOp3 :: (?op :: Word8) => (((SymWord), (SymWord), (SymWord)) -> Integer) -> (((SymWord), (SymWord), (SymWord)) -> (SymWord)) -> EVM () stackOp3 cost f = use (state . stack) >>= \case (x:y:z:xs) -> burn (cost (x, y, z)) $ do next state . stack .= f (x, y, z) : xs _ -> underrun -- * Bytecode data functions checkJump :: (Integral n) => n -> [SymWord] -> EVM () checkJump x xs = do theCode <- use (state . code) self <- use (state . codeContract) theCodeOps <- use (env . contracts . ix self . codeOps) theOpIxMap <- use (env . contracts . ix self . opIxMap) if x < num (len theCode) && 0x5b == (fromMaybe (error "tried to jump to symbolic code location") $ unliteral $ EVM.Symbolic.index (num x) theCode) then if OpJumpdest == snd (theCodeOps RegularVector.! (theOpIxMap Vector.! num x)) then do state . stack .= xs state . pc .= num x else vmError BadJumpDestination else vmError BadJumpDestination opSize :: Word8 -> Int opSize x | x >= 0x60 && x <= 0x7f = num x - 0x60 + 2 opSize _ = 1 -- Index i of the resulting vector contains the operation index for -- the program counter value i. This is needed because source map -- entries are per operation, not per byte. mkOpIxMap :: Buffer -> Vector Int mkOpIxMap xs = Vector.create $ Vector.new (len xs) >>= \v -> -- Loop over the byte string accumulating a vector-mutating action. -- This is somewhat obfuscated, but should be fast. case xs of ConcreteBuffer xs' -> let (_, _, _, m) = BS.foldl' (go v) (0 :: Word8, 0, 0, return ()) xs' in m >> return v SymbolicBuffer xs' -> let (_, _, _, m) = foldl (go' v) (0, 0, 0, return ()) (stripBytecodeMetadataSym xs') in m >> return v where -- concrete case go v (0, !i, !j, !m) x | x >= 0x60 && x <= 0x7f = {- Start of PUSH op. -} (x - 0x60 + 1, i + 1, j, m >> Vector.write v i j) go v (1, !i, !j, !m) _ = {- End of PUSH op. -} (0, i + 1, j + 1, m >> Vector.write v i j) go v (0, !i, !j, !m) _ = {- Other op. -} (0, i + 1, j + 1, m >> Vector.write v i j) go v (n, !i, !j, !m) _ = {- PUSH data. -} (n - 1, i + 1, j, m >> Vector.write v i j) -- symbolic case go' v (0, !i, !j, !m) x = case unliteral x of Just x' -> if x' >= 0x60 && x' <= 0x7f -- start of PUSH op -- then (x' - 0x60 + 1, i + 1, j, m >> Vector.write v i j) -- other data -- else (0, i + 1, j + 1, m >> Vector.write v i j) _ -> error "cannot analyze symbolic code" {- Start of PUSH op. -} (x - 0x60 + 1, i + 1, j, m >> Vector.write v i j) go' v (1, !i, !j, !m) _ = {- End of PUSH op. -} (0, i + 1, j + 1, m >> Vector.write v i j) go' v (n, !i, !j, !m) _ = {- PUSH data. -} (n - 1, i + 1, j, m >> Vector.write v i j) vmOp :: VM -> Maybe Op vmOp vm = let i = vm ^. state . pc code' = vm ^. state . code xs = case code' of ConcreteBuffer xs' -> ConcreteBuffer (BS.drop i xs') SymbolicBuffer xs' -> SymbolicBuffer (drop i xs') op = case xs of ConcreteBuffer b -> BS.index b 0 SymbolicBuffer b -> fromSized $ fromMaybe (error "unexpected symbolic code") (unliteral (b !! 0)) in if (len code' < i) then Nothing else Just (readOp op xs) vmOpIx :: VM -> Maybe Int vmOpIx vm = do self <- currentContract vm (view opIxMap self) Vector.!? (view (state . pc) vm) opParams :: VM -> Map String (SymWord) opParams vm = case vmOp vm of Just OpCreate -> params $ words "value offset size" Just OpCall -> params $ words "gas to value in-offset in-size out-offset out-size" Just OpSstore -> params $ words "index value" Just OpCodecopy -> params $ words "mem-offset code-offset code-size" Just OpSha3 -> params $ words "offset size" Just OpCalldatacopy -> params $ words "to from size" Just OpExtcodecopy -> params $ words "account mem-offset code-offset code-size" Just OpReturn -> params $ words "offset size" Just OpJumpi -> params $ words "destination condition" _ -> mempty where params xs = if length (vm ^. state . stack) >= length xs then Map.fromList (zip xs (vm ^. state . stack)) else mempty readOp :: Word8 -> Buffer -> Op readOp x _ | x >= 0x80 && x <= 0x8f = OpDup (x - 0x80 + 1) readOp x _ | x >= 0x90 && x <= 0x9f = OpSwap (x - 0x90 + 1) readOp x _ | x >= 0xa0 && x <= 0xa4 = OpLog (x - 0xa0) readOp x xs | x >= 0x60 && x <= 0x7f = let n = x - 0x60 + 1 xs'' = case xs of ConcreteBuffer xs' -> num $ EVM.Concrete.readMemoryWord 0 $ BS.take (num n) xs' SymbolicBuffer xs' -> readSWord' 0 $ take (num n) xs' in OpPush xs'' readOp x _ = case x of 0x00 -> OpStop 0x01 -> OpAdd 0x02 -> OpMul 0x03 -> OpSub 0x04 -> OpDiv 0x05 -> OpSdiv 0x06 -> OpMod 0x07 -> OpSmod 0x08 -> OpAddmod 0x09 -> OpMulmod 0x0a -> OpExp 0x0b -> OpSignextend 0x10 -> OpLt 0x11 -> OpGt 0x12 -> OpSlt 0x13 -> OpSgt 0x14 -> OpEq 0x15 -> OpIszero 0x16 -> OpAnd 0x17 -> OpOr 0x18 -> OpXor 0x19 -> OpNot 0x1a -> OpByte 0x1b -> OpShl 0x1c -> OpShr 0x1d -> OpSar 0x20 -> OpSha3 0x30 -> OpAddress 0x31 -> OpBalance 0x32 -> OpOrigin 0x33 -> OpCaller 0x34 -> OpCallvalue 0x35 -> OpCalldataload 0x36 -> OpCalldatasize 0x37 -> OpCalldatacopy 0x38 -> OpCodesize 0x39 -> OpCodecopy 0x3a -> OpGasprice 0x3b -> OpExtcodesize 0x3c -> OpExtcodecopy 0x3d -> OpReturndatasize 0x3e -> OpReturndatacopy 0x3f -> OpExtcodehash 0x40 -> OpBlockhash 0x41 -> OpCoinbase 0x42 -> OpTimestamp 0x43 -> OpNumber 0x44 -> OpDifficulty 0x45 -> OpGaslimit 0x46 -> OpChainid 0x47 -> OpSelfbalance 0x50 -> OpPop 0x51 -> OpMload 0x52 -> OpMstore 0x53 -> OpMstore8 0x54 -> OpSload 0x55 -> OpSstore 0x56 -> OpJump 0x57 -> OpJumpi 0x58 -> OpPc 0x59 -> OpMsize 0x5a -> OpGas 0x5b -> OpJumpdest 0xf0 -> OpCreate 0xf1 -> OpCall 0xf2 -> OpCallcode 0xf3 -> OpReturn 0xf4 -> OpDelegatecall 0xf5 -> OpCreate2 0xfd -> OpRevert 0xfa -> OpStaticcall 0xff -> OpSelfdestruct _ -> OpUnknown x mkCodeOps :: Buffer -> RegularVector.Vector (Int, Op) mkCodeOps (ConcreteBuffer bytes) = RegularVector.fromList . toList $ go 0 bytes where go !i !xs = case BS.uncons xs of Nothing -> mempty Just (x, xs') -> let j = opSize x in (i, readOp x (ConcreteBuffer xs')) Seq.<| go (i + j) (BS.drop j xs) mkCodeOps (SymbolicBuffer bytes) = RegularVector.fromList . toList $ go' 0 (stripBytecodeMetadataSym bytes) where go' !i !xs = case uncons xs of Nothing -> mempty Just (x, xs') -> let x' = fromSized $ fromMaybe (error "unexpected symbolic code argument") $ unliteral x j = opSize x' in (i, readOp x' (SymbolicBuffer xs')) Seq.<| go' (i + j) (drop j xs) -- * Gas cost calculation helpers -- Gas cost function for CALL, transliterated from the Yellow Paper. costOfCall :: FeeSchedule Integer -> Bool -> Word -> Word -> Word -> Addr -> EVM (Integer, Integer) costOfCall (FeeSchedule {..}) recipientExists xValue availableGas' xGas' target = do acc <- accessAccountForGas target let call_base_gas = if acc then g_warm_storage_read else g_cold_account_access availableGas = num availableGas' xGas = num xGas' c_new = if not recipientExists && xValue /= 0 then num g_newaccount else 0 c_xfer = if xValue /= 0 then num g_callvalue else 0 c_extra = num call_base_gas + c_xfer + c_new c_gascap = if availableGas >= c_extra then min xGas (allButOne64th (availableGas - c_extra)) else xGas c_callgas = if xValue /= 0 then c_gascap + num g_callstipend else c_gascap return (c_gascap + c_extra, c_callgas) -- Gas cost of create, including hash cost if needed costOfCreate :: FeeSchedule Integer -> Word -> Word -> (Integer, Integer) costOfCreate (FeeSchedule {..}) availableGas' hashSize = (createCost + initGas, initGas) where availableGas = num availableGas' createCost = g_create + hashCost hashCost = g_sha3word * ceilDiv (num hashSize) 32 initGas = allButOne64th (availableGas - createCost) concreteModexpGasFee :: ByteString -> Integer concreteModexpGasFee input = max 200 ((multiplicationComplexity * iterCount) `div` 3) where (lenb, lene, lenm) = parseModexpLength input ez = isZero (96 + lenb) lene input e' = w256 $ word $ LS.toStrict $ lazySlice (96 + lenb) (min 32 lene) input nwords :: Integer nwords = ceilDiv (num $ max lenb lenm) 8 multiplicationComplexity = nwords * nwords iterCount' :: Integer iterCount' | lene <= 32 && ez = 0 | lene <= 32 = num (log2 e') | e' == 0 = 8 * (num lene - 32) | otherwise = num (log2 e') + 8 * (num lene - 32) iterCount = max iterCount' 1 -- Gas cost of precompiles costOfPrecompile :: FeeSchedule Integer -> Addr -> Buffer -> Integer costOfPrecompile (FeeSchedule {..}) precompileAddr input = case precompileAddr of -- ECRECOVER 0x1 -> 3000 -- SHA2-256 0x2 -> num $ (((len input + 31) `div` 32) * 12) + 60 -- RIPEMD-160 0x3 -> num $ (((len input + 31) `div` 32) * 120) + 600 -- IDENTITY 0x4 -> num $ (((len input + 31) `div` 32) * 3) + 15 -- MODEXP 0x5 -> concreteModexpGasFee input' where input' = case input of SymbolicBuffer _ -> error "unsupported: symbolic MODEXP gas cost calc" ConcreteBuffer b -> b -- ECADD 0x6 -> g_ecadd -- ECMUL 0x7 -> g_ecmul -- ECPAIRING 0x8 -> num $ ((len input) `div` 192) * (num g_pairing_point) + (num g_pairing_base) -- BLAKE2 0x9 -> let input' = case input of SymbolicBuffer _ -> error "unsupported: symbolic BLAKE2B gas cost calc" ConcreteBuffer b -> b in g_fround * (num $ asInteger $ lazySlice 0 4 input') _ -> error ("unimplemented precompiled contract " ++ show precompileAddr) -- Gas cost of memory expansion memoryCost :: FeeSchedule Integer -> Integer -> Integer memoryCost FeeSchedule{..} byteCount = let wordCount = ceilDiv byteCount 32 linearCost = g_memory * wordCount quadraticCost = div (wordCount * wordCount) 512 in linearCost + quadraticCost -- * Arithmetic ceilDiv :: (Num a, Integral a) => a -> a -> a ceilDiv m n = div (m + n - 1) n allButOne64th :: (Num a, Integral a) => a -> a allButOne64th n = n - div n 64 log2 :: FiniteBits b => b -> Int log2 x = finiteBitSize x - 1 - countLeadingZeros x -- * Emacs setup -- Local Variables: -- outline-regexp: "-- \\*+\\|data \\|newtype \\|type \\| +-- op: " -- outline-heading-alist: -- (("-- *" . 1) ("data " . 2) ("newtype " . 2) ("type " . 2)) -- compile-command: "make" -- End: